202 Topics

室内照明案例分享1—照度分布的模拟

本文介绍在 OpticStudio 中对室内照明进行模拟。创建室内照明 通过光源物体创建室内照明。 在这里创建室内照明的规格,如下所示。 亮度     :3000  lm 直径  :φ550 mm 配光  :半值  60°此外,房间空间设置如下。 宽:2.7 m × 3.6m 高:2.2 m 对光源物体使用(椭圆)光源。 为了确认光分布,设置(极)探测器和(矩形)检测器。 由于房间高度为 2.2 米,因此(矩形)探测器被设置在 2.2 米处。 亮度为 3000lm,因此能量设为 3000由于直径为φ550mm,在X半值和Y半值参数中输入半径275mm。通过在余弦指数中输入 1 来指定亮度分布。 执行光线追迹的结果如下所示 光分布 光分布按照输入的余弦 1 次方成比例分布。 此外,最大亮度为 962.53 坎德拉。  照度分布2.7m × 3.6m的探测器放置在距光源 2.2 米处,照度分布如下图所示,中心照度为 197 Lux。 从先前的969.6坎德拉开始计算969.9 坎德拉 / (2.2 米) ^2 = 200 流明 / 平方米,近似计算与模拟结果相符。  查看照度分布,探测器边缘照度降至中心峰值照度的 36%。  光谱我们将使用 YAG 荧光粉白色 LED 光谱进行照明。  查看光谱,如下图所示。 光源的光谱决定了被照亮物体的外观颜色(显色性)。 参数对室内照明的仿真结果有显著影响。   那么,由于光源的数据是可创建的,因此,我们将在“室内”设置的条件下,模拟“室内照明”。 以下为非序列元件编辑器。  房间大小宽:2.7 m × 3.6m 高:2.2 m 使用矩形体创建墙。 探测器位于每面墙的前面(-1mm)。  ※ 在参考物体中输入“-1”,参考上一个物体。 ※ 在探测器的“仅前面”中输入“1”,仅接收来自前面的光线。  接下来,为每面墙设置膜层。 膜层可以按下面所示进行添加。 Coating名:WALL 所有可见光范围内的反射率为 65%。  通过查看不同波长的反射率,可以看到可见光范围的波长内反射率为 65%。  Coating名:BROWN在可见光范围内,短波长具有较低的反射率,而长波长具有更高的反射率。每面墙都反映出所创建膜层的反射率。 散射设置为 “Lambertian”。散射百分比,输入 1。 通过这样的设定,物体既有所设置膜层的反射率,同时有

中继聚光镜系统设计

此文为翻译帖,原文以及附件参考:リレーコンデンサーレンズの設計例について | Zemax Community中继聚光镜系统是照明光学中的基本光学系统。 它的特点是,即使在光源亮度不均匀的情况下,也能实现均匀照明,而且没有能量损失。中继聚光镜系统具有出色的功能。 中继聚光镜光学元件使用两个透镜。第一个镜头被称为聚光镜。它的目的是收集光线,它被设计成在第二个镜头上方形成一个光源的图像。第二个镜头被称为中继镜头,其目的是将第一个镜头的图像引导到受照面。 亮度不均匀的光源是,例如,灯丝和放电管。这些光源的亮度不均匀,但光的分布是均匀的。 一个放置在离光源一定距离的聚光镜被均匀地照亮。通过用中继透镜投射均匀的表面,可以看到被照射的表面也变得均匀照亮。通过将所有入射到聚光镜上的能量转移到中继透镜中来防止能量损失。 最终的镜头数据和布局图如下所示。 最左边的镜头是光源。第一个镜头是聚光镜。第二个镜头是一个中继镜头。 右侧的一端是照明面。 光源很小,如果光源中包括反射元件,得到的光源大小为反射元件的光学尺寸,光源的出瞳即反射系统的出瞳。 中继式聚光镜系统的特点是物面与聚光镜重合。考虑一下OpticStudio中的镜头编辑器是如何组装的。 第一个平面是光阑,它被看作是光源。换句话说,光阑的位置被指定为与物体平面的负距离。与聚光镜使用的是相同的距离。 聚光镜的表面与物体平面对齐,因此可以采用优化方法来减少点斑。然而,应该注意的是,角度过大会导致低照度。 检查为该项目设计的中继式聚光镜系统的照度分布。这是因为聚光镜是圆形的,所以辐照形状也是圆形的。如果聚光镜是矩形的,那么照射形状也将是矩形的。 选择分析→扩展光源分析→几何光学图像分析。有一种复眼透镜,就是由多个上述系统拼合而成。

如何輸入量測資料到Grid Sag面

摘要:這篇文章示範了如何輸入量測資料到Zemax OpticStudio中的Grid Sag,表面起伏資料應為Z座標的sag。原文作者:永田信一さん原文發布時間:Feb 7, 2009假設我們有如下資料 表面起伏資料的定義如下。第一行,由7個數字表示。第1, 2個數字,代表X與Y方向的資料數量,資料形式為整數。第3, 4個數字,代表X與Y方向的資料間距,資料形式為浮點數。第5個數字,代表資料的單位,0表示單位是mm。第6, 7個數字,代表整體資料點的偏心量,資料形式為浮點數。第二之後的資料格式如下,z dz/dx dz/dy d2z/dxdy每行都是如上的資料,資料形式為浮點數。z代表sag值。dz/dx dz/dy代表X與Y方向的微分值。d2z/dxdy代表交叉微分值。資料最少需要5x5個點。在Grid Sag面的設定中,若指定使用Bicubic-spline內插的情況,為了使資料點之間sag的內插結果平滑,必須要輸入微分值。但是,若設定所有的微分值為0,或是該資料留白不輸入,Zemax會自訂使用有限差分法 (Finite Difference Method) 來計算微分值。資料的紀錄順序如下:1.    從的面的左上角,也就是Xmin、Ymax開始。2.    下一個輸入的資料是該點的右邊一個值 (就是X方向加一個間隔)。3.    第一行結束後,往地第二行左邊開頭繼續。4.    填滿時,最後一個數字應為Xmax、YminSag資料的基準面不只是平面,也可以是球面、圓錐曲面或是非球面。檔案的副檔名方面,若是在序列模式,應為 “.DAT”,若是在非序列模式,應為 “.GRD”。在序列模式下定義這個面時,面的型態為 “Grid Sag”。曲率半徑、圓錐係數以及非球面係數可以用來定義輸入資料的基礎面。上圖中看到的參數0,代表sag資料的內插形式,0表示Bicubic-spline,1表示線性內插。 輸入的方式,請將 .DAT 檔置於 “\Documents\Zemax\Objects\Grid Files” 資料夾中。請開啟鏡頭數據編輯器,選擇Grid Sag面,並打開面屬性對話框 (Surface Properties)。然後選取您的 .DAT檔,點選 Import,點擊 OK 輸入。資料輸入後,如果想要檢視輸入結果的話,請選擇 “Ribon工具列 > An

波前 (OPD) 怎麼算的

波前的計算當我們說波前時,事實上通常是指波前 “差”,或是光程差,指的是同一件事。OpticStudio預設使用出瞳作為波前差的計算參考。因此,當我們要計算一條光線的OPD時,此光線會從物面出發後一路追跡穿過光學系統,最終到達像面後,在循原方向後退追跡到 “參考球面”。此參考球面的球心是主光線與像面的交點,半徑是主光線與像面交點到主光線與出瞳面的焦點。然後我們就計算這條光線的總光程,並扣去主光線的光程 (因此主光線的光程差永遠為零,因為他本身就是零的參考點)。要驗證這個敘述,讓我們打開這個內建範例: \Documents\Zemax\Samples\Sequential\Objectives\Double Gauss 28 degree field.ZMX。讓我們在像面之前新增兩個面,第一個面的厚度給予設定求解 = Pupil Position,第二個面給予設定求解 = Pickup,設定為前一個面的厚度乘以-1。並指定第二個面的Radius為求解Pickup,一樣是前一個面的厚度乘以-1。第二個面就是我們所說的參考球面。目前為止設定如下:  然後我們在Merit Function中使用OPTH這個操作數驗證視場1、波長編號2,經過光瞳Py = -1位置的光線以及主光線,兩條光線在參考球面上的光程差。注意我除以波長編號2的波長 (wavelength),因此單位會是波長 (waves)。下面可以看到我們算出來是0.272387 (須乘以一千倍)。然後我們打開OPD Fan並設定如下圖,可以看到Py=-1的時候,波前差確實是-0.272387。現在讓我們來驗證看看離軸的視場,例如說我們想看最大的視場3。首先我們清空評價函數編輯器,然後先暫時把出瞳面的Radius設回無限大。輸入以下資料到評價函數中,目的是計算主光線在出瞳面上的位置、角度以及到像面所經過的光程。記住這三個數字:* Chief ray 在出瞳上的位置是1.651577781670081* Chief ray在出瞳空間中的角度是11.96474523412040* Chief ray從出瞳到像面的距離是110.4592649799319 接下來我們使用Tilt/Decenter工具來移動並傾斜出瞳,如下。然後可以看到系統自動加入兩個Coordinate Break以及相關設定,如下。最後在確保把Chief的

显微镜照明光学系统设计案例分享

显微镜照明光学系统设计简介以下介绍显微镜的照明光学系统设计。显微镜的规格如下所示:放大倍率:10倍NA:0.2(CCD对角的1/2)视场数:8无限远校正系统(infinity corrected ): 12mm成像镜头焦点距离:200mm工作距离:45mm使用的光源:2mm NA=0.25光学系统的设计分为2类:成像系统 照明系统这里介绍的是照明系统的设计。暗场反射式照明用的非球面聚光镜设计作为暗场照明,为设置上一例中显微镜(成像系统)设计中的物镜,需要使用中心半径为8.5mm的中心遮蔽。最终的镜头数据以及布局图如下所示。在STOP表面上设置中心遮挡半径为8.5mm的孔径。这一部分是对暗场照明物镜的预设。在优化向导中,输入0.57遮蔽因子。表示中心遮蔽比例。本例中设置为中心遮蔽半径为8.5mm / 镜头半径15mm = 0.57 。所使用的评价函数如下所示。第1行 _  EFLY焦点距离设置为20mm。※与显微镜(成像系统)设计的物镜具有相同的焦距。第2行 _  REAB对于像面,指定主光线垂直入射。 对这个光学系统的照度分布进行模拟。在序列模式中可以进行简单的照度分布模拟。选择 分析 >扩展光源分析>几何图像模拟由于现在视场数据的定义是角度,视场大小的单位也是角度。文件选择“CIRCLE”,定义直径为4 ° 面光源。由于指定像面的大小为2,模拟结果表示直径为2mm的区域。结果显示选择为“Cross X”,以显示照度分布的截面图。进行分析之后的结果如下所示。半径0.4mm的范围内可读取到几乎一致的明亮度。在这里,将显微镜(成像系统)和显微镜(照明系统)设计的内容设置在一个文件内。成为显微镜的光学系统的设计案例。另外,该数据通过在多重结构中使用,可以根据结构在明场和暗场照明中进行切换。最终的镜头数据以及布局图如下所示。所使用的多重结构如下所示。在序列模式中使用多重结构。多个光学系统可同时进行定义。多重结结构1是明场照明的设定。使用显微镜(成像系统)设计的物镜数据。镜头数据编辑器中的数据如下所示。多重结构2是暗场照明的设定。使用的是显微镜(照明系统)设计的聚光镜数据。因此明场镜头数据被抑制。对该光学系统进行照度分布的模拟。选择分析 > 扩展光源分析 > 几何图像分析。明场照明(config1)中的照度分布如下所示。在0.64×0.48mm范围内可

Badge winners

Show all badges