202 Topics

[网络研讨会Q&A] Zemax 和 Lumerical 工作流程第 1 部分 - 从微观到宏观的光学仿真

感谢大家长期以来对 Zemax 的关注与支持!我们将在以下时间开展本次的网络研讨会,您可以通过以下链接进行本研讨会的注册。并且,您可以在我们全新的 Zemax 社区论坛上,事先或者结束后针对本次研讨会的内容对演讲者进行提问,也请自由留言进行交流。 时间:2022年7月22日(周五)16:00-17:00 参与链接: https://v.ansys.com.cn/live/AuYDgsCG?source=Zemax 内容摘要: 复杂的光学系统往往需要跨多个空间尺度的耦合仿真技术,以实现精确的设计和公差分析。从照明系统中的纳米级发射结构中提取光,或是通过波导和自由空间组件的混合体传播光只是复杂光学系统的一些例子。光线追迹方法在波长维度的结构中往往会失效,而电磁方法对于较大尺寸的器件计算来说过于消耗算力资源。连接纳米级和宏观级光学器件的传统方法需要繁琐的手动文件转换,并且容易出错。作为仿真领域的领导者,Ansys 致力于提供解决方案以加快分析速度并缓解光学设计工作流程中的挑战。在本次网络研讨会中,我们将重点介绍 Zemax OpticStudio 和 Ansys Lumerical 之间相互联动的一些工具,帮助工程师实现从微观到宏观光学系统的仿真设计,从而有效地设计制作创新光学系统。 演示者: 林修安 | AnsysAnsys Zemax光学应用工程师,加入Zemax三年半,目前负责Zemax相关的售前与售后技术服务支持工作。 周铮 | AnsysAnsys系统事业部光学产品应用工程师,华中科技大学和巴黎十一大光电信息硕士,目前负责Ansys Lumerical的业务开发与技术咨询工作。

结合Lumerical和Zemax,一起结伴学习Computational Electromagnetics(计算电磁学)吧

好久不见,关注微纳光学的盆友们应该有关注到目前Lumerical+Zemax的联合解决方案,在7/8月份,我们有两场联合的研讨会,大家可以点开以下链接回看研讨会视频:Zemax 和 Lumerical 工作流程第 1 部分 - 从微观到宏观的光学仿真 (ansys.com.cn)Zemax 和 Lumerical 工作流程第 2 部分- 从微观到宏观的光学仿真 (ansys.com.cn)结合Lumerical和Zemax, 针对不同领域涉及到微观和宏观的系统,我们都可以尝试用此联合方案解决您遇到的仿真和设计问题🥂马上在10月份我们即将正式推出Lumerical+Zemax的RCWA动态链接solution,相信无缝串联的solution可以为大家的设计和仿真带来极大的便利,比如在AR衍射光波导的设计,或者手机摄像头花瓣鬼影的仿真等下面这个研讨会,由Zemax RCWA 设计者Michael Cheng 和Lumerical Zheng Zhou带来,详细介绍了这个新功能,大家可以先睹为快,有任何问题也欢迎提问:使用Zemax OpticStudio与Lumerical RCWA动态连结来设计并优化光波导 (ansys.com.cn)当然大家也可以在此网站内搜索关键词,比如RCWA,或者Meta等来获取相关的知识库文章或者资料分享~Connect with your fellow Zemax-ers | Zemax Community最近我们组内在学习讨论计算电磁学,参考的以下内容,深入简出,可学性很高,欢迎大家跟我们一起来学习哦~~当然可以搭配视频资源, 下面链接里是相关的PDF学习资源~https://empossible.net/academics/emp5337/ 欢迎大家加入学习队伍,一起进步哦~~~啊哈,还有个事,9月份Ansys 光学全线产品Lumerical+Zemax+Speos 会参加深圳CIOE光博会,组内专家全员出动,多个technical talk准备中,欢迎大家关注[Ansys光电大本营]公众号,我们会发布CIOE动态我们深圳见~ 

Fizeau干涉仪模拟实例

本文为翻译帖,作者是Kensuke Hiraka。原文链接(含附件):フィゾー干渉計のシミュレーションについて | Zemax Community本节介绍一个Fizeau干涉仪的模拟实例。干涉仪有多种类型,这里介绍的Fizeau干涉仪是一种干涉仪,广泛用于测量光学元件和透射波面的表面精度。 这里我们介绍一个使用Fizeau干涉仪来测量透镜的透射波面变形的例子。以下是被测试的系统。 使用一个有效直径为50毫米、焦距为578毫米的平凸透镜。为了表示不对称的像差,用Zernike条纹相位面来增加像散和慧差像差。 还使用了-0.7的圆锥系数。 平凸透镜会导致大的球差。下图是镜头数据编辑器。 背面的焦点是571.982毫米。以下是光路图。可以使用分析->波前图对波前进行分析。下图展示的是波前图的分析结果。波前PV值 0.3821λ、RMS 0.0881λ。接下来,对Fizeau干涉仪进行建模。 要建立一个含有 "平面光源 "的Fizeau干涉仪模型(即发射准直光),选择 "无焦像空间 "复选框并进入无焦模式,如下图所示。在对 "球面原型 "进行建模时(在这里发出会聚光),请将镜头置于正常焦距模式。镜头数据编辑器如下图所示。 在测试透镜后面放一个凸面镜反射光线,这样光线就会重新进入测试透镜。 应注意以下两点:1. 从测试镜头到凸面镜的距离应该是测试镜头的后焦点(571.982毫米)减去凸面镜的曲率半径(本例中为300毫米)。2.尽可能多地拾取数据,以确保在待测数据发生变化时,回程的数据相应变化。 各种系数也被拾取。模型完成后的光路图如下所示。检查波前像差图。可以看出,波前像差为0.7642λpv和0.1762λRMS,是单透镜的两倍。 也可以看出,不对称像差没有问题(因为往返的光通量通过被测镜头上的同一个地方)。因此,Fizeau干涉仪输出值的1/2是被测透镜本身的波前像差。此外还可以使用下图的干涉图分析功能进行波前分析:放大率被设置为1。 帮助文件指出,对于双通道光学系统,放大率应设置为2,但这是在双通道光学系统被建模为简化的单通道时。 如果像本例中那样对整个双通道进行建模,则应将放大率设为1。

解像力仿真

本文为翻译帖,作者是Ryosuke Niitsu。原文链接:解像力チャートのシミュレーションについて | Zemax Community 本节介绍了一个模拟解像力图表的例子。作为一个例子,我们将使用一个等倍率的光学系统,如下图所示。首先,检查该光学系统的MTF。分辨率图是用黑白的二进制图像创建的。MTF设置如下图所示。解析图使用的是 "方波"。显示的是短波的MTF。在物体高度为-20毫米时检查20个周期/毫米,表明S图像_50% T图像6%。 接下来,对解像力图进行图像模拟。有两种方法可供选择。 (1) 局部相干图像分析。选择分析→扩展光源分析→部分相干图像分析。作为一个假设,需要注意的是,MTF是在20周期/毫米时评估的。在光学行业,一个单色对被算作 "1本"。换句话说,在20周期/毫米时,单色对的宽度是1毫米/20对=0.05毫米。 在这个模拟中,使用了'LINEPAIR.IMD'文件。该文件包含10行对,有10个0.05毫米的黑白对,所以0.05毫米×10=0.5毫米。那么在图像空间中,文件的一侧长度为0.5毫米。 真正的MTF是通过设置显示方法为X-section来计算的。MTF计算结果显示在红色框内的区域, 该值为50%。 (2)图像模拟。这样做的好处是可以在实际图表的图像上进行模拟。许多分辨率图表有多条垂直和水平排列的线。您也可以创建自己想仿真的图像。例如,对于一个纵向和横向都有三条线的图像文件来说我们将在一个文本文件中创建它,如下所示。然后,通过将文件扩展名转换为IMA,该文件可以作为图像文件使用。分析→扩展光源分析→图像模拟。按照以下参数对仿真进行设置,使用自定义的图像文件作为输入文件。输入0.3作为视场的高度。 你所创建的图像文件是12 x 12。因此,线的宽度是输入0.3的1/12,也就是0.025毫米。对于一对线对,0.025 x 2 = 0.05。 仿真的图像如下所示。你可以看到两条水平线(切线图像)。这种现象被称为 "伪像"。用FFTMTF检查时,切向图像为15线/毫米,MTF为0。然而,此后会有百分之几的对比度复现。在这种情况下,对比度可能存在,但黑白图像可能被颠倒。 如果在FFTMTF的设置中将类型改为相位,可以发现,在15线/毫米或更多的情况下,相位转为180°。 

[网络研讨会Q&A] Zemax 和 Lumerical 工作流程第 2 部分 - 从微观到宏观的光学仿真

感谢大家长期以来对 Zemax 的关注与支持!我们将在以下时间开展本次的网络研讨会,您可以通过以下链接进行本研讨会的注册。并且,您可以在我们全新的 Zemax 社区论坛上,事先或者结束后针对本次研讨会的内容对演讲者进行提问,也请自由留言进行交流。 时间:2022年8月17日(周三)16:00-17:00 参与链接: https://v.ansys.com.cn/live/IAu0Rjy9 内容摘要: 在这次网络研讨会中,我们将研究Ansys光学工具组合如何为超表面或超透镜的设计提供一个完整的工作流。这些革命性的超薄光学元件可用于操纵可见光和红外波段的光,用于许多应用,包括智能手机摄像头、AR/MR、3D传感和人脸识别。由于超表面的亚波长特性,使用电磁场求解器(Ansys Lumerical FDTD/RCWA)的组合来准确仿真超表面的相位和场轮廓至关重要,然后再结合光线追迹(Zemax OpticStudio)将其优化至需求的镜头规格。  演示者: 陈媛 | Ansys/Zemax应用工程师法国高等光学学校硕士, 在2020年加入Zemax,现为Ansys系统事业部光学产品应用工程师。主要负责内容包括全球客户的技术支持,Zemax中文论坛的技术内容创作和推广。陈致豪 | Ansys/Lumerical应用工程师大学就读於台湾清华大学电机系,在2020年加入Ansys/Lumerical担任应用工程师,熟悉FDTD和MODE仿真工具。主要负责内容包括亚太地区客户的技术支持,帮助客户排除问题以及实现仿真目标,同时也协助介绍和推广公司产品,不定期参加或协助举办研讨会,分享光子学相关领域的产品应用实例。

室内照明案例分享2—室内场景模拟

本文介绍室内照明(天花板顶灯),在室内人眼所看到的情况的模拟示例。上一篇文章中,我们创建了照亮房间的照明部分。我们将从创建家具开始。 家具制作使用Part Desginer功能创建房间家具。下面是沙发的示例。 同样,创建(带电视支架)电视、窗帘、桌子和椅子。各自创建膜层数据。反射率可以自由设置。下面是用于沙发的示例。同样,创建多个膜层。这里创建的膜层,分配如下。 Sofa       :沙发和椅子的座位部分。WOOD :桌子、椅子和电视支架。Curtain :窗帘。各波长对应的反射率如下图所示。◆Sofa◆WOOD◆Curtain对物体表面进行分组在“分析”选项卡的物体编辑器中打开物体。将使用同一膜层的表面转换为同一面组。通过为每个面组设置膜层属性,可以省去为每个表面设置的麻烦。通过如上的设置,椅子的面0使用WOOD膜层,Lambertian 散射。 模拟人眼在室内所见人眼所见的模拟方法如下:使用镜头。 使用RayRotator。 但是,如果使用透镜,由于景深较浅的缘故,整个房间因为离焦无法反射成清晰像。要实现模拟是困难的。 另外,使用 RayRotator 时,需要将光源放在相机内部,无法显示安装在室内的光源照亮室内的亮度情况。 因此,像针孔照相机那样景深深,光源可以放置在相机外部的方式进行模拟。下图是非序列元件编辑器中的信息。Object1:光源。    Object2:通过(颜色)探测器探测图像。    Object3:针孔相机的外壳。   Object 4:0.2mm×0.2mm 物体。使用重点采样,因此十分重要。  Object 5- 10 :房间四周的墙壁。Object 12-16:设置的家具。 相机部分的设定如下所示。物体2是探测器物体。物体 4 设置为非常小的矩形。 然后,在“重点采样”中,光线指向该物体后汇集,并记录在探测器中。 只有通过物体4光线才能到物体3(物体3是相机外壳),为设置光线不直接进入探测器,物体3属性为吸收。 该方法与针孔相机原理相同,它就像在探测器上投射室内图像一样。从物体 3 到探测器的距离会影响透视。 越短,透视就越突出。在此示例中设置为 50mm,在此情况下,透视感自然。物体4作为散射表面,设置重点采样。这样,被照射的物体上散射的所有光线都可以指向物体 4。然而,这种情况下,墙壁和地板上反射的光不能再次照亮房间。因此,我们

[网络研讨会] 使用Zemax OpticStudio与Lumerical RCWA动态连结来设计并优化光波导

感谢大家长期以来对 Zemax 的关注与支持!我们将在以下时间开展本次的网络研讨会,您可以通过以下链接进行本研讨会的注册。并且,您可以在我们全新的 Zemax 社区论坛上,事先或者结束后针对本次研讨会的内容对演讲者进行提问,也请自由留言进行交流。时间:2022年7月21日(周四)9:00 PM - 9:45 PM (GMT+8)2022年7月22日(周五)2:00 AM - 2:45 AM (GMT+8)参与链接: https://register.gotowebinar.com/rt/1317253837013918220?source=Zemax内容摘要:这些年来,增强现实(AR)设备的市场一直在增长,并继续加快这一进程。在许多不同类型的设计中,衍射波导成为市场上最重要的主流之一。在这次网络研讨会上,我们将介绍一个设计和优化波导的工作流程解决方案,它也被称为出瞳扩展器。在这个工作流程中,首先在Lumerical环境中设计和分析最初的一维或二维光栅。该光栅可以被参数化,其中的几何形状由一些用戶定义的参数控制。在光线追踪过程中,OpticStudio在后台通过API自动调用Lumerical RCWA,以求解光栅的电场响应。操作过程中,Lumerical的参数通过这个API显示在OpticStudio用户界面中。我们将演示用户如何从OpticStudio用户界面改变光栅的几何形状,并触发Lumerical自动计算新数据。还会演示一个简单的优化例子。演示者:Michael ChengKyle Johnson 

Badge winners

Show all badges