233 Topics

解像力仿真

本文为翻译帖,作者是Ryosuke Niitsu。原文链接:解像力チャートのシミュレーションについて | Zemax Community 本节介绍了一个模拟解像力图表的例子。作为一个例子,我们将使用一个等倍率的光学系统,如下图所示。首先,检查该光学系统的MTF。分辨率图是用黑白的二进制图像创建的。MTF设置如下图所示。解析图使用的是 "方波"。显示的是短波的MTF。在物体高度为-20毫米时检查20个周期/毫米,表明S图像_50% T图像6%。 接下来,对解像力图进行图像模拟。有两种方法可供选择。 (1) 局部相干图像分析。选择分析→扩展光源分析→部分相干图像分析。作为一个假设,需要注意的是,MTF是在20周期/毫米时评估的。在光学行业,一个单色对被算作 "1本"。换句话说,在20周期/毫米时,单色对的宽度是1毫米/20对=0.05毫米。 在这个模拟中,使用了'LINEPAIR.IMD'文件。该文件包含10行对,有10个0.05毫米的黑白对,所以0.05毫米×10=0.5毫米。那么在图像空间中,文件的一侧长度为0.5毫米。 真正的MTF是通过设置显示方法为X-section来计算的。MTF计算结果显示在红色框内的区域, 该值为50%。 (2)图像模拟。这样做的好处是可以在实际图表的图像上进行模拟。许多分辨率图表有多条垂直和水平排列的线。您也可以创建自己想仿真的图像。例如,对于一个纵向和横向都有三条线的图像文件来说我们将在一个文本文件中创建它,如下所示。然后,通过将文件扩展名转换为IMA,该文件可以作为图像文件使用。分析→扩展光源分析→图像模拟。按照以下参数对仿真进行设置,使用自定义的图像文件作为输入文件。输入0.3作为视场的高度。 你所创建的图像文件是12 x 12。因此,线的宽度是输入0.3的1/12,也就是0.025毫米。对于一对线对,0.025 x 2 = 0.05。 仿真的图像如下所示。你可以看到两条水平线(切线图像)。这种现象被称为 "伪像"。用FFTMTF检查时,切向图像为15线/毫米,MTF为0。然而,此后会有百分之几的对比度复现。在这种情况下,对比度可能存在,但黑白图像可能被颠倒。 如果在FFTMTF的设置中将类型改为相位,可以发现,在15线/毫米或更多的情况下,相位转为180°。 

室内照明案例分享2—室内场景模拟

本文介绍室内照明(天花板顶灯),在室内人眼所看到的情况的模拟示例。上一篇文章中,我们创建了照亮房间的照明部分。我们将从创建家具开始。 家具制作使用Part Desginer功能创建房间家具。下面是沙发的示例。 同样,创建(带电视支架)电视、窗帘、桌子和椅子。各自创建膜层数据。反射率可以自由设置。下面是用于沙发的示例。同样,创建多个膜层。这里创建的膜层,分配如下。 Sofa       :沙发和椅子的座位部分。WOOD :桌子、椅子和电视支架。Curtain :窗帘。各波长对应的反射率如下图所示。◆Sofa◆WOOD◆Curtain对物体表面进行分组在“分析”选项卡的物体编辑器中打开物体。将使用同一膜层的表面转换为同一面组。通过为每个面组设置膜层属性,可以省去为每个表面设置的麻烦。通过如上的设置,椅子的面0使用WOOD膜层,Lambertian 散射。 模拟人眼在室内所见人眼所见的模拟方法如下:使用镜头。 使用RayRotator。 但是,如果使用透镜,由于景深较浅的缘故,整个房间因为离焦无法反射成清晰像。要实现模拟是困难的。 另外,使用 RayRotator 时,需要将光源放在相机内部,无法显示安装在室内的光源照亮室内的亮度情况。 因此,像针孔照相机那样景深深,光源可以放置在相机外部的方式进行模拟。下图是非序列元件编辑器中的信息。Object1:光源。    Object2:通过(颜色)探测器探测图像。    Object3:针孔相机的外壳。   Object 4:0.2mm×0.2mm 物体。使用重点采样,因此十分重要。  Object 5- 10 :房间四周的墙壁。Object 12-16:设置的家具。 相机部分的设定如下所示。物体2是探测器物体。物体 4 设置为非常小的矩形。 然后,在“重点采样”中,光线指向该物体后汇集,并记录在探测器中。 只有通过物体4光线才能到物体3(物体3是相机外壳),为设置光线不直接进入探测器,物体3属性为吸收。 该方法与针孔相机原理相同,它就像在探测器上投射室内图像一样。从物体 3 到探测器的距离会影响透视。 越短,透视就越突出。在此示例中设置为 50mm,在此情况下,透视感自然。物体4作为散射表面,设置重点采样。这样,被照射的物体上散射的所有光线都可以指向物体 4。然而,这种情况下,墙壁和地板上反射的光不能再次照亮房间。因此,我们

[网络研讨会] 使用Zemax OpticStudio与Lumerical RCWA动态连结来设计并优化光波导

感谢大家长期以来对 Zemax 的关注与支持!我们将在以下时间开展本次的网络研讨会,您可以通过以下链接进行本研讨会的注册。并且,您可以在我们全新的 Zemax 社区论坛上,事先或者结束后针对本次研讨会的内容对演讲者进行提问,也请自由留言进行交流。时间:2022年7月21日(周四)9:00 PM - 9:45 PM (GMT+8)2022年7月22日(周五)2:00 AM - 2:45 AM (GMT+8)参与链接: https://register.gotowebinar.com/rt/1317253837013918220?source=Zemax内容摘要:这些年来,增强现实(AR)设备的市场一直在增长,并继续加快这一进程。在许多不同类型的设计中,衍射波导成为市场上最重要的主流之一。在这次网络研讨会上,我们将介绍一个设计和优化波导的工作流程解决方案,它也被称为出瞳扩展器。在这个工作流程中,首先在Lumerical环境中设计和分析最初的一维或二维光栅。该光栅可以被参数化,其中的几何形状由一些用戶定义的参数控制。在光线追踪过程中,OpticStudio在后台通过API自动调用Lumerical RCWA,以求解光栅的电场响应。操作过程中,Lumerical的参数通过这个API显示在OpticStudio用户界面中。我们将演示用户如何从OpticStudio用户界面改变光栅的几何形状,并触发Lumerical自动计算新数据。还会演示一个简单的优化例子。演示者:Michael ChengKyle Johnson 

室内照明案例分享1—照度分布的模拟

本文介绍在 OpticStudio 中对室内照明进行模拟。创建室内照明 通过光源物体创建室内照明。 在这里创建室内照明的规格,如下所示。 亮度     :3000  lm 直径  :φ550 mm 配光  :半值  60°此外,房间空间设置如下。 宽:2.7 m × 3.6m 高:2.2 m 对光源物体使用(椭圆)光源。 为了确认光分布,设置(极)探测器和(矩形)检测器。 由于房间高度为 2.2 米,因此(矩形)探测器被设置在 2.2 米处。 亮度为 3000lm,因此能量设为 3000由于直径为φ550mm,在X半值和Y半值参数中输入半径275mm。通过在余弦指数中输入 1 来指定亮度分布。 执行光线追迹的结果如下所示 光分布 光分布按照输入的余弦 1 次方成比例分布。 此外,最大亮度为 962.53 坎德拉。  照度分布2.7m × 3.6m的探测器放置在距光源 2.2 米处,照度分布如下图所示,中心照度为 197 Lux。 从先前的969.6坎德拉开始计算969.9 坎德拉 / (2.2 米) ^2 = 200 流明 / 平方米,近似计算与模拟结果相符。  查看照度分布,探测器边缘照度降至中心峰值照度的 36%。  光谱我们将使用 YAG 荧光粉白色 LED 光谱进行照明。  查看光谱,如下图所示。 光源的光谱决定了被照亮物体的外观颜色(显色性)。 参数对室内照明的仿真结果有显著影响。   那么,由于光源的数据是可创建的,因此,我们将在“室内”设置的条件下,模拟“室内照明”。 以下为非序列元件编辑器。  房间大小宽:2.7 m × 3.6m 高:2.2 m 使用矩形体创建墙。 探测器位于每面墙的前面(-1mm)。  ※ 在参考物体中输入“-1”,参考上一个物体。 ※ 在探测器的“仅前面”中输入“1”,仅接收来自前面的光线。  接下来,为每面墙设置膜层。 膜层可以按下面所示进行添加。 Coating名:WALL 所有可见光范围内的反射率为 65%。  通过查看不同波长的反射率,可以看到可见光范围的波长内反射率为 65%。  Coating名:BROWN在可见光范围内,短波长具有较低的反射率,而长波长具有更高的反射率。每面墙都反映出所创建膜层的反射率。 散射设置为 “Lambertian”。散射百分比,输入 1。 通过这样的设定,物体既有所设置膜层的反射率,同时有

中继聚光镜系统设计

此文为翻译帖,原文以及附件参考:リレーコンデンサーレンズの設計例について | Zemax Community中继聚光镜系统是照明光学中的基本光学系统。 它的特点是,即使在光源亮度不均匀的情况下,也能实现均匀照明,而且没有能量损失。中继聚光镜系统具有出色的功能。 中继聚光镜光学元件使用两个透镜。第一个镜头被称为聚光镜。它的目的是收集光线,它被设计成在第二个镜头上方形成一个光源的图像。第二个镜头被称为中继镜头,其目的是将第一个镜头的图像引导到受照面。 亮度不均匀的光源是,例如,灯丝和放电管。这些光源的亮度不均匀,但光的分布是均匀的。 一个放置在离光源一定距离的聚光镜被均匀地照亮。通过用中继透镜投射均匀的表面,可以看到被照射的表面也变得均匀照亮。通过将所有入射到聚光镜上的能量转移到中继透镜中来防止能量损失。 最终的镜头数据和布局图如下所示。 最左边的镜头是光源。第一个镜头是聚光镜。第二个镜头是一个中继镜头。 右侧的一端是照明面。 光源很小,如果光源中包括反射元件,得到的光源大小为反射元件的光学尺寸,光源的出瞳即反射系统的出瞳。 中继式聚光镜系统的特点是物面与聚光镜重合。考虑一下OpticStudio中的镜头编辑器是如何组装的。 第一个平面是光阑,它被看作是光源。换句话说,光阑的位置被指定为与物体平面的负距离。与聚光镜使用的是相同的距离。 聚光镜的表面与物体平面对齐,因此可以采用优化方法来减少点斑。然而,应该注意的是,角度过大会导致低照度。 检查为该项目设计的中继式聚光镜系统的照度分布。这是因为聚光镜是圆形的,所以辐照形状也是圆形的。如果聚光镜是矩形的,那么照射形状也将是矩形的。 选择分析→扩展光源分析→几何光学图像分析。有一种复眼透镜,就是由多个上述系统拼合而成。

如何輸入量測資料到Grid Sag面

摘要:這篇文章示範了如何輸入量測資料到Zemax OpticStudio中的Grid Sag,表面起伏資料應為Z座標的sag。原文作者:永田信一さん原文發布時間:Feb 7, 2009假設我們有如下資料 表面起伏資料的定義如下。第一行,由7個數字表示。第1, 2個數字,代表X與Y方向的資料數量,資料形式為整數。第3, 4個數字,代表X與Y方向的資料間距,資料形式為浮點數。第5個數字,代表資料的單位,0表示單位是mm。第6, 7個數字,代表整體資料點的偏心量,資料形式為浮點數。第二之後的資料格式如下,z dz/dx dz/dy d2z/dxdy每行都是如上的資料,資料形式為浮點數。z代表sag值。dz/dx dz/dy代表X與Y方向的微分值。d2z/dxdy代表交叉微分值。資料最少需要5x5個點。在Grid Sag面的設定中,若指定使用Bicubic-spline內插的情況,為了使資料點之間sag的內插結果平滑,必須要輸入微分值。但是,若設定所有的微分值為0,或是該資料留白不輸入,Zemax會自訂使用有限差分法 (Finite Difference Method) 來計算微分值。資料的紀錄順序如下:1.    從的面的左上角,也就是Xmin、Ymax開始。2.    下一個輸入的資料是該點的右邊一個值 (就是X方向加一個間隔)。3.    第一行結束後,往地第二行左邊開頭繼續。4.    填滿時,最後一個數字應為Xmax、YminSag資料的基準面不只是平面,也可以是球面、圓錐曲面或是非球面。檔案的副檔名方面,若是在序列模式,應為 “.DAT”,若是在非序列模式,應為 “.GRD”。在序列模式下定義這個面時,面的型態為 “Grid Sag”。曲率半徑、圓錐係數以及非球面係數可以用來定義輸入資料的基礎面。上圖中看到的參數0,代表sag資料的內插形式,0表示Bicubic-spline,1表示線性內插。 輸入的方式,請將 .DAT 檔置於 “\Documents\Zemax\Objects\Grid Files” 資料夾中。請開啟鏡頭數據編輯器,選擇Grid Sag面,並打開面屬性對話框 (Surface Properties)。然後選取您的 .DAT檔,點選 Import,點擊 OK 輸入。資料輸入後,如果想要檢視輸入結果的話,請選擇 “Ribon工具列 > An

波前 (OPD) 怎麼算的

波前的計算當我們說波前時,事實上通常是指波前 “差”,或是光程差,指的是同一件事。OpticStudio預設使用出瞳作為波前差的計算參考。因此,當我們要計算一條光線的OPD時,此光線會從物面出發後一路追跡穿過光學系統,最終到達像面後,在循原方向後退追跡到 “參考球面”。此參考球面的球心是主光線與像面的交點,半徑是主光線與像面交點到主光線與出瞳面的焦點。然後我們就計算這條光線的總光程,並扣去主光線的光程 (因此主光線的光程差永遠為零,因為他本身就是零的參考點)。要驗證這個敘述,讓我們打開這個內建範例: \Documents\Zemax\Samples\Sequential\Objectives\Double Gauss 28 degree field.ZMX。讓我們在像面之前新增兩個面,第一個面的厚度給予設定求解 = Pupil Position,第二個面給予設定求解 = Pickup,設定為前一個面的厚度乘以-1。並指定第二個面的Radius為求解Pickup,一樣是前一個面的厚度乘以-1。第二個面就是我們所說的參考球面。目前為止設定如下:  然後我們在Merit Function中使用OPTH這個操作數驗證視場1、波長編號2,經過光瞳Py = -1位置的光線以及主光線,兩條光線在參考球面上的光程差。注意我除以波長編號2的波長 (wavelength),因此單位會是波長 (waves)。下面可以看到我們算出來是0.272387 (須乘以一千倍)。然後我們打開OPD Fan並設定如下圖,可以看到Py=-1的時候,波前差確實是-0.272387。現在讓我們來驗證看看離軸的視場,例如說我們想看最大的視場3。首先我們清空評價函數編輯器,然後先暫時把出瞳面的Radius設回無限大。輸入以下資料到評價函數中,目的是計算主光線在出瞳面上的位置、角度以及到像面所經過的光程。記住這三個數字:* Chief ray 在出瞳上的位置是1.651577781670081* Chief ray在出瞳空間中的角度是11.96474523412040* Chief ray從出瞳到像面的距離是110.4592649799319 接下來我們使用Tilt/Decenter工具來移動並傾斜出瞳,如下。然後可以看到系統自動加入兩個Coordinate Break以及相關設定,如下。最後在確保把Chief的

Badge winners

  • Allow me to introduce myself
    Sean Turnerhas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    saifhas earned the badge Allow me to introduce myself
  • Visibly Un-Polarized
    chaasjeshas earned the badge Visibly Un-Polarized
  • Visibly Un-Polarized
    Sean Turnerhas earned the badge Visibly Un-Polarized
  • Allow me to introduce myself
    Davidhas earned the badge Allow me to introduce myself
Show all badges