149 Topics

用OpticStudio模擬微結構薄膜產生摩爾紋 (Moiré)

摘要:本範例將會示範如何在Zemax OpticStudio模擬微結構膜薄膜產生的圖案,包含以下部分:* 背景簡介* 範例1:柱狀透鏡陣列薄膜 (Lenticular Array Sheet) 交疊製造紋路* 範例2:雙面微透鏡陣列結構塑膠片的紋路產生作者:Michael Cheng文章發布時間:February 14, 2017背景簡介隨著近代射出射出與滾輪押出技術的進步,許多產品開始可以在量產層面上,製造塑膠片或薄膜上微米級的週期性微結構。例如液晶螢幕中常見的增亮膜 (Brightness Enhancement Film,以下簡稱BEF),就是一個很好的例子。當這些微結構片 (或貼膜) 相互交疊時,若是在適當的角度下,則會產生各種條紋圖案 (Moiré)。這些條紋,根據不同的應用,有時候是必須去除的,例如當BEF與V-cut導光板交疊時,如果同方向擺置,則微小的角度差,便有可能發生螢幕亮案變化的狀況。而在另一些應用中,有時候這些圖案則是故意設計、產生以製造表面質感的。例如Rowlux® (ROWLAND公司的註冊商標) 便是一種塑膠片,利用雙面微結構陣列製造出能隨不同角度變化圖案的立體質感。本文章將用兩個不同的範例,來說明如何模擬這些效應。範例1:柱狀透鏡陣列 (Lenticular Array) 薄膜交疊製造紋路本範例中,我們模擬兩片N-BK7玻璃平板,上面各自貼上一片柱狀透鏡陣列的PMMA薄膜。然後我們把這兩片平板錯開一個角度後,建立一個遠方來的光源,照射在此結構上,最後使用Paraxial Lens與一個探測器,模擬眼睛所看到的條紋。首先結構的部分,我們使用Toroidal Lens來製作柱狀透鏡單元,然後透過Array物件把此單元複製成微陣列結構。玻璃平板則透過Rectangular Volume這個物件完成。設定如下: 注意我們給兩個Toroidal Lens都設定了 “Do Not Draw This Object” 以及 “Rays Ignore Object: Always”,這兩個設定都是經由Object Properties對話框完成的。另外值得注意的是,物件5的Tilt About Z設定為5,表示兩個結構間相差5度,稍後我們會修改這個數值,觀察不同角度的變化。此外,我們需要給物件1指定曲面部分反射光線,如下圖: 打開Shaded Mod

如何輸入量測資料到Grid Sag面

摘要:這篇文章示範了如何輸入量測資料到Zemax OpticStudio中的Grid Sag,表面起伏資料應為Z座標的sag。原文作者:永田信一さん原文發布時間:Feb 7, 2009假設我們有如下資料 表面起伏資料的定義如下。第一行,由7個數字表示。第1, 2個數字,代表X與Y方向的資料數量,資料形式為整數。第3, 4個數字,代表X與Y方向的資料間距,資料形式為浮點數。第5個數字,代表資料的單位,0表示單位是mm。第6, 7個數字,代表整體資料點的偏心量,資料形式為浮點數。第二之後的資料格式如下,z dz/dx dz/dy d2z/dxdy每行都是如上的資料,資料形式為浮點數。z代表sag值。dz/dx dz/dy代表X與Y方向的微分值。d2z/dxdy代表交叉微分值。資料最少需要5x5個點。在Grid Sag面的設定中,若指定使用Bicubic-spline內插的情況,為了使資料點之間sag的內插結果平滑,必須要輸入微分值。但是,若設定所有的微分值為0,或是該資料留白不輸入,Zemax會自訂使用有限差分法 (Finite Difference Method) 來計算微分值。資料的紀錄順序如下:1.    從的面的左上角,也就是Xmin、Ymax開始。2.    下一個輸入的資料是該點的右邊一個值 (就是X方向加一個間隔)。3.    第一行結束後,往地第二行左邊開頭繼續。4.    填滿時,最後一個數字應為Xmax、YminSag資料的基準面不只是平面,也可以是球面、圓錐曲面或是非球面。檔案的副檔名方面,若是在序列模式,應為 “.DAT”,若是在非序列模式,應為 “.GRD”。在序列模式下定義這個面時,面的型態為 “Grid Sag”。曲率半徑、圓錐係數以及非球面係數可以用來定義輸入資料的基礎面。上圖中看到的參數0,代表sag資料的內插形式,0表示Bicubic-spline,1表示線性內插。 輸入的方式,請將 .DAT 檔置於 “\Documents\Zemax\Objects\Grid Files” 資料夾中。請開啟鏡頭數據編輯器,選擇Grid Sag面,並打開面屬性對話框 (Surface Properties)。然後選取您的 .DAT檔,點選 Import,點擊 OK 輸入。資料輸入後,如果想要檢視輸入結果的話,請選擇 “Ribon工具列 > An

波前 (OPD) 怎麼算的

波前的計算當我們說波前時,事實上通常是指波前 “差”,或是光程差,指的是同一件事。OpticStudio預設使用出瞳作為波前差的計算參考。因此,當我們要計算一條光線的OPD時,此光線會從物面出發後一路追跡穿過光學系統,最終到達像面後,在循原方向後退追跡到 “參考球面”。此參考球面的球心是主光線與像面的交點,半徑是主光線與像面交點到主光線與出瞳面的焦點。然後我們就計算這條光線的總光程,並扣去主光線的光程 (因此主光線的光程差永遠為零,因為他本身就是零的參考點)。要驗證這個敘述,讓我們打開這個內建範例: \Documents\Zemax\Samples\Sequential\Objectives\Double Gauss 28 degree field.ZMX。讓我們在像面之前新增兩個面,第一個面的厚度給予設定求解 = Pupil Position,第二個面給予設定求解 = Pickup,設定為前一個面的厚度乘以-1。並指定第二個面的Radius為求解Pickup,一樣是前一個面的厚度乘以-1。第二個面就是我們所說的參考球面。目前為止設定如下:  然後我們在Merit Function中使用OPTH這個操作數驗證視場1、波長編號2,經過光瞳Py = -1位置的光線以及主光線,兩條光線在參考球面上的光程差。注意我除以波長編號2的波長 (wavelength),因此單位會是波長 (waves)。下面可以看到我們算出來是0.272387 (須乘以一千倍)。然後我們打開OPD Fan並設定如下圖,可以看到Py=-1的時候,波前差確實是-0.272387。現在讓我們來驗證看看離軸的視場,例如說我們想看最大的視場3。首先我們清空評價函數編輯器,然後先暫時把出瞳面的Radius設回無限大。輸入以下資料到評價函數中,目的是計算主光線在出瞳面上的位置、角度以及到像面所經過的光程。記住這三個數字:* Chief ray 在出瞳上的位置是1.651577781670081* Chief ray在出瞳空間中的角度是11.96474523412040* Chief ray從出瞳到像面的距離是110.4592649799319 接下來我們使用Tilt/Decenter工具來移動並傾斜出瞳,如下。然後可以看到系統自動加入兩個Coordinate Break以及相關設定,如下。最後在確保把Chief的

显微镜照明光学系统设计案例分享

显微镜照明光学系统设计简介以下介绍显微镜的照明光学系统设计。显微镜的规格如下所示:放大倍率:10倍NA:0.2(CCD对角的1/2)视场数:8无限远校正系统(infinity corrected ): 12mm成像镜头焦点距离:200mm工作距离:45mm使用的光源:2mm NA=0.25光学系统的设计分为2类:成像系统 照明系统这里介绍的是照明系统的设计。暗场反射式照明用的非球面聚光镜设计作为暗场照明,为设置上一例中显微镜(成像系统)设计中的物镜,需要使用中心半径为8.5mm的中心遮蔽。最终的镜头数据以及布局图如下所示。在STOP表面上设置中心遮挡半径为8.5mm的孔径。这一部分是对暗场照明物镜的预设。在优化向导中,输入0.57遮蔽因子。表示中心遮蔽比例。本例中设置为中心遮蔽半径为8.5mm / 镜头半径15mm = 0.57 。所使用的评价函数如下所示。第1行 _  EFLY焦点距离设置为20mm。※与显微镜(成像系统)设计的物镜具有相同的焦距。第2行 _  REAB对于像面,指定主光线垂直入射。 对这个光学系统的照度分布进行模拟。在序列模式中可以进行简单的照度分布模拟。选择 分析 >扩展光源分析>几何图像模拟由于现在视场数据的定义是角度,视场大小的单位也是角度。文件选择“CIRCLE”,定义直径为4 ° 面光源。由于指定像面的大小为2,模拟结果表示直径为2mm的区域。结果显示选择为“Cross X”,以显示照度分布的截面图。进行分析之后的结果如下所示。半径0.4mm的范围内可读取到几乎一致的明亮度。在这里,将显微镜(成像系统)和显微镜(照明系统)设计的内容设置在一个文件内。成为显微镜的光学系统的设计案例。另外,该数据通过在多重结构中使用,可以根据结构在明场和暗场照明中进行切换。最终的镜头数据以及布局图如下所示。所使用的多重结构如下所示。在序列模式中使用多重结构。多个光学系统可同时进行定义。多重结结构1是明场照明的设定。使用显微镜(成像系统)设计的物镜数据。镜头数据编辑器中的数据如下所示。多重结构2是暗场照明的设定。使用的是显微镜(照明系统)设计的聚光镜数据。因此明场镜头数据被抑制。对该光学系统进行照度分布的模拟。选择分析 > 扩展光源分析 > 几何图像分析。明场照明(config1)中的照度分布如下所示。在0.64×0.48mm范围内可

Ansys Zemax STAR与Ansys Mechanical/Fluent的跨界合作

 欢迎大家的到来~🥂😊之前我们已经认识了STAR模块(Zemax STAR模块的自白---【我是一个分析温度、形变对光学系统影响的工具】 | Zemax Community),对于整个工作流来讲,OpticStudio,STAR模块与其他Ansys工具的集成可以使工作流程得以简化且保证了精度。对STAR感兴趣的盆友可以点击如下链接加入STAR User Group,相关STAR的信息都会更新在其中STAR User Community我们以高能激光的案例再来说明下这个工作流:光学系统的设计(分析、优化、公差分析等):Ansys Zemax OpticStudio在OpticStudio中完成光学设计后,对于光机设计,可参与构建 CAD 和其他机械组件的Ansys软件:Zemax OpticsBuilder,SpaceClaim等,具体选择取决于具体情况。导出设计以进行 FEA 分析。将OpticStudio和CAD的组件导入Ansys Mechanical进行热或应力条件下的有限元仿真分析(初始条件也可以导入)。 定义网格并在感兴趣区域使用更精细的网格应用网格控制,以获得更好的保真度,而不太重要的区域使用稀疏网格,从而加快处理速度。OpticStudio STAR模块具有的一大优势是可以应用于光学元件的网格控制,STAR能够导入非均匀数据。    接下来,我们使用Ansys Mechanical进行瞬态分析,可同时查看机械和光学组件。绘制单个或多个组件的图表,如下图。  当然,也可以结合Ansys Fluent做相关的流体分析:  在运行包括结构,热,CFD等在内的研究之后,通过STAR模块将其完整地带到OpticStudio。要尽可能轻松地执行此操作,请尝试使用Ansys WorkBench的ACT文件扩展,它允许以STAR要求的格式导出数据。从零件树或屏幕中选择光学元件,单击鼠标右键,然后从下拉列表中选择导出到 STAR。  将相应数据利用STAR导入 OpticStudio 中 ,并进行相关分析: 

Badge winners

  • Allow me to introduce myself
    Cheng-Ching.Chenhas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    yl.wuhas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    kpaladiyahas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    mojtaba.falahatihas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    knbsegohas earned the badge Allow me to introduce myself
Show all badges