Skip to main content
186 Topics

https://www.zemax.jp/blogs/news/tech-tips-june-2021?_pos=1&_sid=f2fa35af3&_ss=r 有効焦点距離とディストーション焦点距離の違いについて多くの光学定義において、焦点距離は比較的使われる数値です。ただし、計算によって、求める焦点距離の定義が変わる事を注意しなければいけません。このブログ記事では、近軸の焦点距離の計算の違いを、有効焦点距離とディストーション焦点距離で説明します。ディストーション (歪曲) 収差とは、光の実際の焦点が「期待される」焦点位置と一致しないことです。 では、「期待」とは何を意味するのでしょうか。 ほとんどの撮像装置の「期待値」は、h=f tanθです。これは、焦点距離に対する像高の正接に入射角をかけたもので、当たり前のことですが、f tanθの物体-像の関係は、直線を撮影しても、直線が見えることを保証しています。まず、f tanθを例にして、ディストーション収差の本来の定義式を説明します。ここで「f」とは、有効焦点距離(EFFL)ではなく、ディストーション焦点距離 (Distortion Focal Length) です。OpticStudioでは、近軸光線を追跡して光軸との交点を求め、EFFLを算出します。近軸光線とは、光学設計の言葉で言えば、0視野、非常に小さな瞳です。 例えば、(Hx, Hy, Px, Py) = (0, 0, 0, 1E-8) となります。EFFLの大きさは、明らかに像面の位置とは関係ありません。しかし、このディストーション収差の大きさは、明らかに像面の位置に関係しています。歪曲収差の焦点距離を定義する際には、小さな視野の主光線(Chief Ray)を追跡することになります。すなわち、(Hx, Hy, Px, Py)=(0, 1E-8, 0, 0)となります。視野が0に近づくと、収差はデフォルトで0、つまりyref = ychief = ftanθとなり、ychiefとθはどちらも実光線を追跡して得ることができます。 上の式から逆算して、この時点での焦点距離fを求めることができます。この焦点距離はディストーション焦点距離であり、明らかに像面位置に関係しています。ディストーション収差のfはそのままEFFLを使うことができないのはこのた

表記のオンラインセミナーを実施予定です。このコミュニティフォーラムにて、事前の質問及び開催後の質問も受け付けますので、お気軽にコメントを残してください。 日時:2021 年 9 月 15 日(水)14:00-15:00 参加リンク:https://go.zemax.com/5877976385064324877-register.htmlアブストラクト現実の光学系では、熱や構造変形が性能に大きな影響を与えてしまう使用用途があります。今回のセミナーでは、ハイパワーレーザー光学系を例に、OpticStudio を使った光学系、OpticsBuilder によるモデルの表示、FEA 解析が設定された光学系の STAR 性能評価を、実際のファイルを元にしてた実操作を含めてご紹介します。熱や構造変形を伴う難しい光学系に対しても、試作回数を最低限とした光学系の量産化に向けた検討例となると存じますので、是非ご視聴ください。特に、2021年5月に登場した、OpticStudio 21.2 より使用可能な STAR モジュールについても動作をご確認いただけます。このモジュールは、FEA データにより解析された構造変形や熱変形を OpticStudio に取り込み、光学解析をシームレスに行えるようにするためのモジュールです。プレゼンタ:Zemax Japan 株式会社 オプティカルエンジニア 松元 峻士

以下のリンクからZPLコードをダウンロードしてください。Code Exchangeというコミュニティは、Zemaxのサポートを受けているユーザ様が、OpticStudioの機能を拡張するためのプログラミング・ソリューションを探したり、共有したりするためです。Zemaxのサポートを受けているユーザ様限定です。https://community.zemax.com/code-exchange-10/zpl-operand-get-the-minimum-distance-between-two-surfaces-with-coordinate-break-1575 ZPL オペランド:座標ブレーク面を使用した2つ面の最小距離の取得目的最適化プロセスでは、通常、2つのレンズの間に適切な距離を設定して、レンズが干渉しないようにする必要があります。しかし、現在のメリットファンクションのオペランドは、座標ブレーク面を使用したレンズをサポートしていません。解決策としては、ZPLMを使って、座標ブレーク面を持つ2つの面の間の最小距離を求めることが考えられます。使い方は以下の通りです。パラメータHx:面①の面番号。パラメータHy:面②の面番号Data=0: 面①のローカル z 軸に沿った 2 つ面の間の最小距離を取得します。Data=1:面①のローカル z 軸に沿った 2 つ面の間の最大距離を取得します。本ZPLMの制限事項1. 2つの間の最小距離とは、面①のローカルZ軸に沿った距離を意味します。本コードでは、グローバル座標面の基準を一時的に面①とし、計算後に元に戻すようにしています。2. 下図の黄色の重なっている部分のみを対象とし、範囲を超えた部分は対象外とします。範囲内では、100点を取って水平距離を計算し、最大値と最小値を求めます。 3.コードには光線追跡が使用されています。そのため、2つの面の間に屈折率の変化がないことを確認する必要があります。2つの面の間に屈折率の変化があるシステムの場合は、すべての材質を空気に変更してから光線追跡を行い、計算後に材質を元の設定に戻すというコードを追加することができます。 4.コードはx=0のyz平面で考えられています。つまり、z軸に沿った回転、y軸に沿った回転、x軸に沿ったディセンタは考慮されていません。より複雑な変換が必要な場合は、自分で

Zemaxのカスタマーサクセス部門でアジアパシフィック地域のリージョナル・カスタマーサクセス・マネージャーを務めている池田賢元と申します。Zemaxに入社して2年あまり、当初はプリンシパル・オプティカル・エンジニアとして勤務していました。物理を専攻しており、光学の知識はあったものの、実際の光学系の設計知識や経験は主にOn the Job Trainingで得ました。Zemaxに入社する前は、プラスチックレンズの製造会社に勤務し、様々な光学系の設計に携わってきた事で光学のスキルと製造の知識を磨いてきました。Zemaxに入社してからは、Zemax製品のトレーニング講習や(対面トレーニング、プライベートトレーニング、オンライントレーニング)、Zemax製品のユースケースの作成と学会での発表、OpticStudioなどの深い操作方法を紹介するナレッジ記事の作成、Zemaxユーザー様への訪問によるソリューション提供などに従事しており、現在はアジアパシフィック地域のカスタマーサクセスを統括する立場にあります。日本光学会 光設計研究グループの運営委員も兼務しております。光学設計は歴史の長い技術であるとともに、世界でも日本の技術が秀でている分野でもあると私は考えます。新しく高度な技術開発が絶え間なく進められている分野でありながら、日本においては研究や技術の交流が少なく感じるのは残念です。Zemax コミュニティフォーラムは光学設計およびその周辺の研究者や技術の情報交換を提供できる場となって欲しいです。光学設計ソフトによるレンズ設計・光学設計はもちろん、関連技術である光学系の加工や測定・評価、光学系や光学素子等の設計などの周辺技術の話題も歓迎します。

Badge winners

Show all badges