• 27 Topics
  • 37 Replies

27 Topics

显微镜照明光学系统设计案例分享

显微镜照明光学系统设计简介以下介绍显微镜的照明光学系统设计。显微镜的规格如下所示:放大倍率:10倍NA:0.2(CCD对角的1/2)视场数:8无限远校正系统(infinity corrected ): 12mm成像镜头焦点距离:200mm工作距离:45mm使用的光源:2mm NA=0.25光学系统的设计分为2类:成像系统 照明系统这里介绍的是照明系统的设计。暗场反射式照明用的非球面聚光镜设计作为暗场照明,为设置上一例中显微镜(成像系统)设计中的物镜,需要使用中心半径为8.5mm的中心遮蔽。最终的镜头数据以及布局图如下所示。在STOP表面上设置中心遮挡半径为8.5mm的孔径。这一部分是对暗场照明物镜的预设。在优化向导中,输入0.57遮蔽因子。表示中心遮蔽比例。本例中设置为中心遮蔽半径为8.5mm / 镜头半径15mm = 0.57 。所使用的评价函数如下所示。第1行 _  EFLY焦点距离设置为20mm。※与显微镜(成像系统)设计的物镜具有相同的焦距。第2行 _  REAB对于像面,指定主光线垂直入射。 对这个光学系统的照度分布进行模拟。在序列模式中可以进行简单的照度分布模拟。选择 分析 >扩展光源分析>几何图像模拟由于现在视场数据的定义是角度,视场大小的单位也是角度。文件选择“CIRCLE”,定义直径为4 ° 面光源。由于指定像面的大小为2,模拟结果表示直径为2mm的区域。结果显示选择为“Cross X”,以显示照度分布的截面图。进行分析之后的结果如下所示。半径0.4mm的范围内可读取到几乎一致的明亮度。在这里,将显微镜(成像系统)和显微镜(照明系统)设计的内容设置在一个文件内。成为显微镜的光学系统的设计案例。另外,该数据通过在多重结构中使用,可以根据结构在明场和暗场照明中进行切换。最终的镜头数据以及布局图如下所示。所使用的多重结构如下所示。在序列模式中使用多重结构。多个光学系统可同时进行定义。多重结结构1是明场照明的设定。使用显微镜(成像系统)设计的物镜数据。镜头数据编辑器中的数据如下所示。多重结构2是暗场照明的设定。使用的是显微镜(照明系统)设计的聚光镜数据。因此明场镜头数据被抑制。对该光学系统进行照度分布的模拟。选择分析 > 扩展光源分析 > 几何图像分析。明场照明(config1)中的照度分布如下所示。在0.64×0.48mm范围内可

Ansys Zemax STAR与Ansys Mechanical/Fluent的跨界合作

 欢迎大家的到来~🥂😊之前我们已经认识了STAR模块(Zemax STAR模块的自白---【我是一个分析温度、形变对光学系统影响的工具】 | Zemax Community),对于整个工作流来讲,OpticStudio,STAR模块与其他Ansys工具的集成可以使工作流程得以简化且保证了精度。对STAR感兴趣的盆友可以点击如下链接加入STAR User Group,相关STAR的信息都会更新在其中STAR User Community我们以高能激光的案例再来说明下这个工作流:光学系统的设计(分析、优化、公差分析等):Ansys Zemax OpticStudio在OpticStudio中完成光学设计后,对于光机设计,可参与构建 CAD 和其他机械组件的Ansys软件:Zemax OpticsBuilder,SpaceClaim等,具体选择取决于具体情况。导出设计以进行 FEA 分析。将OpticStudio和CAD的组件导入Ansys Mechanical进行热或应力条件下的有限元仿真分析(初始条件也可以导入)。 定义网格并在感兴趣区域使用更精细的网格应用网格控制,以获得更好的保真度,而不太重要的区域使用稀疏网格,从而加快处理速度。OpticStudio STAR模块具有的一大优势是可以应用于光学元件的网格控制,STAR能够导入非均匀数据。    接下来,我们使用Ansys Mechanical进行瞬态分析,可同时查看机械和光学组件。绘制单个或多个组件的图表,如下图。  当然,也可以结合Ansys Fluent做相关的流体分析:  在运行包括结构,热,CFD等在内的研究之后,通过STAR模块将其完整地带到OpticStudio。要尽可能轻松地执行此操作,请尝试使用Ansys WorkBench的ACT文件扩展,它允许以STAR要求的格式导出数据。从零件树或屏幕中选择光学元件,单击鼠标右键,然后从下拉列表中选择导出到 STAR。  将相应数据利用STAR导入 OpticStudio 中 ,并进行相关分析: 

[网络研讨会] Zemax集成化光学系统模拟整体解决方案 – 高能激光系统示例

感谢大家长期以来对 Zemax 的关注与支持!我们将在以下时间开展本次的网络研讨会,您可以通过以下链接进行本研讨会的注册。并且,您可以在我们全新的 Zemax 社区论坛上,事先或者结束后针对本次研讨会的内容对演讲者进行提问,也请自由留言进行交流。  时间:2022年5月25日(周三) 14:00-15:00 参与链接: https://attendee.gotowebinar.com/register/1819028061812850699?source=community 内容摘要: 在如今光学系统设计中,热效应和结构形变对于光学系统性能有着很大的影响。在本次研讨会中,我们将以全面介绍如何使用 OpticStudio 设计光学系统、并随后使用 OpticsBuilder 进行机械元件建模,最后结合 STAR 模块整合 FEA 分析数据应用于光学系统进行综合性能评价,作为如今 Zemax 旗下产品的完整应用流程。同时,我们也将使用高能激光系统为例,包含实际的文件做出基础的演示操作,帮助您更加直观地了解该操作流程中的详细细节。 需要进行热效应和结构形变分析的复杂光学系统性能整体分析,通常都是光学设计与分析领域的痛点,本次研讨会将为您带来全新的解决方案 - 基于 OpticStudio 的 STAR 模块。该模块于 2021 年 5 月载入至 OpticStudio 21.2 版本中,可以将分析得到的 FEA 数据应用至光学系统中的各元件表面上,拟合后对于系统进行整体的光学性能分析,无缝完成所有所需操作。 演示者: 高级应用工程师 胡皓胜,Ansys Zemax 中国

Zemax STAR模块的自白---【我是一个分析温度、形变对光学系统影响的工具】

欢迎大家的到来,期待大家的回复~~今天,让我们来花点时间让STAR这个小盆友做个全面的自我介绍如果听完自我介绍,想继续了解的盆友们,可以点击如下链接加入STAR User GroupSTAR User Community一同在其中讨论关于STAR的相关问题,分享使用它的乐趣,体会它每一点进步带来的喜悦初出茅庐的STAR可谓是今年涌现的黑马,一举成名,获得了2022 SPIE软件类“棱镜奖”  STAR 模块是什么? 简而言之,STAR 可以和它的小兄弟“FEA有限元分析软件”一起,让 OpticStudio 用户可以在 OpticStudio中采用全部的Analyze功能进行结构应力、 热对光学性能影响的分析。小兄弟负责获得FEA分析结果,剩下的部分STAR和OpticStudio完成。锦上添花的是,我们可以利用STAR 模块包含的 STAR-API programming功能,实现工作流自动化。  STAR 模块的优势在哪?  一句话概括,完成FEA 数据与光学表面准确匹配,并让其精确地反映到光学模型上。改善 STOP 分析的准确性 不同于使用 Zernike 多项式往往需要使用高阶项系数进行形变拟合,STAR 模块将使用数据拟合算法(piecewise spline fit )完成对表面的拟合。‎使用STAR导入的FEA形变数据包含position或者air gap(镜间距)的变化,因此,当用户采用STAR load FEA 数据时,他们既可以获得表面的位移量(RBMs :rigid body motions),也可以获得高阶形变量( higher-order deformations)。所以,STAR考虑了系统整体变化带来的影响(目前应力双折射效应的考量在roadmap中)。‎目前STAR拟合算法对于所有具有实际物理意义的表面都可以准确拟合,换而言之,我们不推荐对于类似近轴透镜(paraxial lens)或者一些相位面(phase surfaces)采用STAR仿真。 原始 FEA 数据仅用于生成数值拟合,拟合后的结果存储在.ZST 文件中用于后续光线追踪和在不同分析中显示结果。值得一提的是,区别于一些solution的点在于,有了STAR,FEA数据中非均匀格点将被支持:将 2D 表面形变转换为非均匀网格矢高数据将 3D 温度分布情况转换为非均匀折射率分布

关于OpticStudio中POP(物理光学传播)的那些事

欢迎大家的到来,期待大家的回复~~今天我们花点时间来认识下OS中的POP功能~对于POP(物理光学传播),在知识库文章中有如下几篇文章,可以让大家快速入门,且解决80%的POP使用问题。当然,Zemax Community里也有很多POP相关的精彩讨论。探索OpticStudio中的物理光学传播 – 中文帮助 (zemax.com)如何在OpticStudio中模拟激光光束传播:第三部分 使用物理光学传播来模拟高斯光束 – 中文帮助 (zemax.com)Using-Physical-Optics-Propagation-POP-Part-1-Inspecting-the-beamsUsing-Physical-Optics-Propagation-POP-Part-2-Inspecting-the-beam-intensitiesUsing-Physical-Optics-Propagation-POP-Part-3-Inspecting-the-beam-phasesPOP 中本质上传播的是每个采样点上具有 Ex/Ey 电场分布的传播矩阵,用于表征传播的光束波前,然后与系统中的各个光学表面进行相互作用。当光束传播到表面的时候,本质上会将波前分解成为 Probing Rays,计算这些 Probing Rays 传播过后的情况,从而对比初始 Probing Rays 计算出对应的 Transfer Function,结合表面位置的波前计算出传播该光学表面过后的结果波前。在这样的计算过程中,光学表面引起的像差、传播中的衍射效应等都可以考虑进入传播当中。总结下,POP的过程就是定义初始光束 > 用Pilot Beam指导自由空间传播 > 用Probing Ray指导穿越光学界面 > 在指定位置读取光束能量和相位数据。下面一篇公众号文章也进行了很好的说明~梳理一下Zemax POP的工作逻辑 关于POP的使用场景  POP VS. Huygens PSF POP is really only ‘better than’ the PSF (either FFT or Huygens) if there are significant apertures that clip the beam.The strength/weakness of POP is

OpticStudio内的通用画图工具介绍-Universal Plot

 欢迎大家的到来今天我们花点时间来认识下,OpticStudio里一个好用但有可能被遗忘的绘图小工具:Universal Plot。Universal Plot 是存在于专业版和旗舰版的通用绘图工具: 它是可以应用在序列或者非序列模式下,以任意表面参数,系统参数,多重结构或者非序列参数为变量(横轴),以优化操作数作为因变量(纵轴)的绘图工具。     换句话说,只要是能以优化操作数提取的信息,都可以作为纵轴的输出。   关于因变量(Dependent Variable)的选择,可以分为两种方式:方式1: 直接采用操作数,然后设置对应参数(下图左) 方式2:选择Merit,然后选择Merit Function Editor 中你想使用的对应行(下图右)  Universal Plot 有一维和二维可供选择,二维可以有两个变量(X,Y),一个因变量(Z)  希望这个工具可以在大家日常的设计输出或者评估中发挥作用下面我们来讨论下关于Universal Plot几个常见的问题:  采用POPD,IMAE等操作数作为因变量时,画出来的曲线感觉跟设置对不上? 如果遇到这类问题,大家可以看下Help File帮助文档里有没有对这个操作数的使用提醒    比如POPD的使用,需要设定后点击Save, 之后再用Universal Plot信息就会更新了。IMAE也是类似的操作。   采用NSDD操作数时, Universal Plot 无响应? NSDD操作数在Universal Plot的使用,须采用上述的方法二,即采用Merit方式, 且设置上需要搭配其他操作数,如NSTR一起,可以参考以下文章所描述的方法如何在Universal Plot中使用NSDD操作数  如果我想在Universal Plot中引入优化后的结果作为因变量(Dependent Variable),我应该怎么做? 首先明确的是,Universal Plot的工作流程是将变量X带入系统,算出对应的Y值,中间不涉及任何的优化过程。但如果想把优化引入之中,可以采用ZPLM。关于ZPLM也有些需要注意的地方,比如在ZPLM中采用GETT,再优化或者使用Universal Plot ,会遇到问题,可以参考下面有趣的讨论:如何在Universal Plot中引入ZPLM当然,这种方式的分析可能需要更长的时间来计算,因为必

关于Image Simulation图像模拟的二三事

欢迎大家的到来,期待大家的回复~~今天上午由高级应用工程师胡皓胜给大家带了一场关于【如何在OpticStudio中模拟图像质量】的精彩研讨会那么关于OS里的Image Simulation 图像模拟,大家可以一边回看着Haosheng的研讨会,一边看着我们的一篇知识库文章进行了同步理解~研讨会相关内容更新:如何进行图像仿真研讨会相关知识库文章:如何进行图像仿真一篇有趣的论坛案列分享(推荐~对于掌握image simulation很有帮助):Selecting Oversampling and Field height in IS | Zemax Community那使用过程中,大家常常遇到的问题解答如下问:什么是图像模拟?答:图像模拟工具通过将源位图文件与点扩散函数阵列进行卷积来模拟图像的形成。考虑的效应包括衍射,像差,畸变,相对照度,图像方向,偏振影响等。此工具有助于可视化所设计光学系统的图像质量。它提供了一种定性但直接的方法来评估成像系统的性能,并使客户更容易"看到"模拟的图像质量。问:图像模拟与几何图像分析?答:如果您的系统远未受到衍射限制,您可以使用几何图像分析 (GIA)。GIA 使用纯几何光线追踪,被认为是模拟图像的"黄金标准"。但是,如果您的系统受到衍射限制,则需要包括衍射效应。在这种情况下,您应该使用图像模拟。图像模拟使用惠更斯PSF与源位图进行卷积,以考虑衍射效应。值得注意的是,即使选择了 "像差:衍射",如果像差非常严重以至于无法准确计算衍射 PSF,分析仍可能自动切换到几何。 有关此内容的讨论列在帮助文件中。问:使用图像模拟的推荐方法是什么答:使用图像模拟工具时,建议使用视场角或物高来定义【Field Height视场高度】选项。对有限共轭系统使用"物高"(如下图所示,这点需要注意),对无限共轭系统可使用"视场角",因为这些字段类型明确定义了对象在图像空间中的大小和方向。当我们采用视场角来定义setting中的Field Height时我们需要注意,具体我们建议查看帮助文件:帮助文件中概述的使用视场角来定义的主要困难是视场角单位本质上是变形的。由于无限共轭系统不允许将物高作为定义,因此,如果您仍然希望使用物高来定义此处的Field Height,则可以使系统转换为有限共轭,方式是可以在前面添加一个近轴透镜paraxial lens。 问:图像模

[网络研讨会] Zemax集成化光学系统模拟整体解决方案 – 高能激光系统示例

感谢大家对 Zemax 的关注与支持!我们将在以下时间开展本次的网络研讨会,您可以通过以下链接进行本研讨会的注册。并且,您可以在我们全新的 Zemax 社区论坛上,事先或者结束后针对本次研讨会的内容对演讲者进行提问,也请自由留言进行交流。  时间:2021年9月15日(周三)14:00-15:00 参与链接:https://register.gotowebinar.com/register/7595644445225320718 内容摘要: 在现实的光学系统中,热效应和结构形变对于光学系统性能有着很大的影响。在这次的研讨会上,以高能激光光学系统为例,介绍使用 OpticStudio 设计光学系统、使用 OpticsBuilder 进行机械元件建模,使用 STAR 模块结合 FEA 分析数据应用于光学系统进行综合性能评价,其中将包含以实际文件为基础的演示操作。需要进行热效应和结构形变分析的复杂光学系统性能整体分析,通常都是光学设计与分析领域的痛点,本次研讨会将为您带来全新的解决方案 - 基于 OpticStudio 的 STAR 模块。该模块于 2021 年 5 月载入至 OpticStudio 21.2 版本中,可以将分析得到的 FEA 数据应用至光学系统中的各元件表面上,拟合后对于系统进行整体的光学性能分析,无缝完成所有所需操作。 本次研讨会已结束,录制视频获取地址:https://www.zemax.net.cn/blogs/webinars/high-powered-lasers 演示者: 光学工程师 胡皓胜,Zemax 中国

Badge winners

  • Allow me to introduce myself
    Cheng-Ching.Chenhas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    yl.wuhas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    kpaladiyahas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    mojtaba.falahatihas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    knbsegohas earned the badge Allow me to introduce myself
Show all badges