Skip to main content
Solved

Zernike Standard sag (terms higher than 37)

  • February 25, 2022
  • 4 replies
  • 335 views

Hi! I know Zemax has up to 231 Zernike terms for Zernike Standard sag value but I can’t find the Polynomial formula for terms higher than 37. Is there any way I could find what is the mathematical formula for higher order terms? thanks!

Best answer by Mark.Nicholson

Sorry, I misunderstood your question.

Go to Analyze...Wavefront...Zernike Standard Coefficients and set the maximum term to 231. The listing will give the functional form for each term, for example:


Z 226        0.00000000    :      42^(1/2) (190p^20 - 342p^18 + 153p^16) * COS (16A)

Z 227        0.00000000    :      42^(1/2) (190p^20 - 342p^18 + 153p^16) * SIN (16A)

Z 228        0.00000000    :      42^(1/2) (20p^20 - 19p^18) * COS (18A)

Z 229        0.00000000    :      42^(1/2) (20p^20 - 19p^18) * SIN (18A)

Z 230        0.00000000    :      42^(1/2) (p^20) * COS (20A)

Z 231        0.00000000    :      42^(1/2) (p^20) * SIN (20A)

 

View original
Did this topic help you find an answer to your question?

4 replies

Mark.Nicholson
Luminary
Forum|alt.badge.img+3

Hi Nafiseh, try https://en.wikipedia.org/wiki/Zernike_polynomials, it gives the general convention.


Thanks but I am looking for a table with all of the terms. CodeV and Zemax have two different coefficient orders and I usually look at the formula to find which order they are using, 


Mark.Nicholson
Luminary
Forum|alt.badge.img+3

Sorry, I misunderstood your question.

Go to Analyze...Wavefront...Zernike Standard Coefficients and set the maximum term to 231. The listing will give the functional form for each term, for example:


Z 226        0.00000000    :      42^(1/2) (190p^20 - 342p^18 + 153p^16) * COS (16A)

Z 227        0.00000000    :      42^(1/2) (190p^20 - 342p^18 + 153p^16) * SIN (16A)

Z 228        0.00000000    :      42^(1/2) (20p^20 - 19p^18) * COS (18A)

Z 229        0.00000000    :      42^(1/2) (20p^20 - 19p^18) * SIN (18A)

Z 230        0.00000000    :      42^(1/2) (p^20) * COS (20A)

Z 231        0.00000000    :      42^(1/2) (p^20) * SIN (20A)

 


got it thanks!


Reply


Cookie policy

We use cookies to enhance and personalize your experience. If you accept you agree to our full cookie policy. Learn more about our cookies.

 
Cookie settings