• 161 Topics
  • 228 Replies

161 Topics

公差分析時會看到的Root Sum Square (RSS) 有什麼意義?

簡介在本知識庫中的 “如何進行序列模式公差分析” 這篇文章中,我們簡單說明了RSS的計算方式如下:在所有公差單獨計算之後,OpticStudio可以計算各種不同的統計資料,其中最重要的就是 "Estimated Change" 以及 “Estimated Performance” (本範例中為Estimated RMS Wavefront)。Zemax使用RSS (Root Sum Square) 方法來計算品質的Estimated Change。對於每一個公差操作數,相對於原始設計的評價標準改變量之計算方法是最大與最小公差的評價標準改變各自平方,然後再取平均。最大與最小值之所以取平均是因為它們不可能同時發生,如果相加的話會導致過分悲觀的預測。我們將用公差統計中的堆疊問題 (Stack Up) 說明 RSS 的計算。堆疊問題問題的描述是這樣的:想像我們有5個木板要疊在一起,並需要估計疊在一起的總厚度。已知每一片木板的厚度都有些許不同 (現實世界總是會有誤差!),每片木板的厚度大約在25 mm加減0.1 mm的範圍內隨機分布。假設這些木板的厚度機率是常態分布,中心是25 mm,機率最大,25.1 mm跟24.9 mm的機率則是e^-2,剛好會是距離中心兩倍標準差 (sigma) 的位置,畫出來如下圖。 好,所以現在問題是,如果我們疊了5塊木板以後,厚度的機率分布會變成怎樣? 答案是125 mm加減0.224  mm。並且也會是常態分佈。以125作為中心,125.224與124.776的位置發生機率恰好是e^-2。換句話說,整個系統的總厚度:1. 也是常態分佈。2. 常態分佈中心剛好是每塊木板的各自機率分佈的中心的總合:5+5+5+5+5=125。3. 整個系統常態分佈機率為e^-2的地方,會是每塊木板各自常態分佈為e^-2時的偏差值 (deviation) 各自平方後、再加總、再開根號,也就是所謂的Root Sum Square (RSS),你可以在Excel中輸入這右邊這串計算來驗證:sqrt(0.1^2+0.1^2+0.1^2+0.1^2+0.1^2)。答案正是0.224。詳細的證明可以參考Wiki的說明:https://en.wikipedia.org/wiki/Sum_of_normally_distributed_random_variables解讀與假設看

序列模式模擬Laser Diode (雷射二極體) 光源

前言雷射二極體 (Laser Diode,以下簡稱LD) 由於體積小、同調性、單色等優點,十年來逐漸被應用在各種軍事或商業產品中。無論哪種LD,其結構中一定都包含一個主動層,雷射光便是從主動層中通過激發與共振的過程後出光。雖然主動層也有材料、折射率等各種考量,但對於光學工程師來說,我們僅關心其出光的型態如何在OpticStudio中模擬。跟一般雷射不同的是,LD的光束通常發散角度很大。對於一些主動層開口在側面的類型來說,光束甚至不是圓形,而是橢圓的型態,且X與Y方向上焦點位置不同,即所謂像散 (Astigmatism)  的特性。雷射的出光形狀以及強度等結構,會跟主動層的設計有很大關係,雖然從波導理論的角度來看,我們知道矩形的主動層並不會產生完美的高斯光束,但一般LD其光型結構跟高斯光束通常很接近 (能量較弱兩側略為可能不同),因此常見的方法是用高斯光束來模擬LD,這也是本文要使用的方式。以下我們將說明在已知X與Y方向散角下,如何以光線方式模擬高斯強度分布、橢圓光束、以及像散 (Astigmatism) 等特性。注意1:此文章將說明如何在序列模式中用 “光線” 描述雷射光束。由於雷射為高同調性光源,光束在傳播上干涉、繞射的效應強,而光線模型對於繞射效應的模擬是有限的,非所有狀況適用。當繞射效應的影響很重要時,應該採用物理光學傳播 (POP) 來模擬該系統。以下是幾種常見,可能光線模型不適用,須小心對待的狀況。1. 傳播距離長。雷射在瑞利距 (Rayleigh Range) 前後的行為可能有很大差異,無法用光線精確預測。2. 光束在系統中有被明顯遮蔽。同調光源在被遮蔽時,在孔徑邊緣會有強烈的繞射,而讓光線後續傳播中,產生與光線預測不同的結果。3. 尋找最小光斑位置。光線預測的最小光斑位置與繞射傳播預測的位置可能會有不同。聚焦時的光點大小預測可能也會不同。注意2:此方法假設光束為單一模態,也就是高斯模態,超過一個模態以上,須改用物理光學傳播模擬。 不考慮Astigmatism的模擬方法沒有Astigmatism特性時,我們假設雷射二極體是點光源,帶有高斯的強度分布,以及指定散角的橢圓分布。現在讓我們先開新檔案,然後把物距改為100,因為現在雷射是從物面出發的點光源。讓我們先做一些簡單計算假設我們的二極體雷射在兩個方向上散角如下:X方向的FWHM為25°Y方向的FWHM為

Tolerance的Criterion怎麼計算的,如何確認計算細節?

摘要:這篇文章介紹一些簡單的方法,用來確認Zemax OpticStudio如何計算這些公差Criterion。當使用者不太確定某個Criterion是怎麼來的時候,這些技巧會非常有用。 簡介Zemax OpticStudio在公差分析方面有完整的功能,過程也有清楚的數學說明,但與公差分析的目標相比 (最終要知道良率或敏感度),其執行過程卻有龐大的細節。這篇文章將整理幾個常用的確認細節的方法,不同的情境有不同的方法,我們共有以下主題:1.    當我們說 “計算Criterion” 時,Zemax OpticStudio做了什麼2.    簡介Criterion種類3.    說明Diff. MTF Avg./Tan./Sag.的計算方式4.    使用 “SAVE” 公差指令紀錄Sensitivity計算過程5.    利用Monte Carlo存檔瞭解公差擾動如何被執行6.    如何表列所有Monte Carlo檔案的亂數參數在繼續往下閱讀之前,建議閱讀者可以先閱讀此知識庫中相關的基礎公差分析文章,例如下面幾篇文章:How to perform a sequential tolerance analysis How to analyze your tolerance results 當我們說 “計算Criterion” 時,Zemax OpticStudio做了什麼以下的敘述主要關乎Criterion的計算,不管我們是做Sensitivity分析或是Monte Carlo分析,都適用。Criterion首先我們要花一點時間說明Criterion本身,才說明優化等其他動作。在公差分析時,我們所做的事情,就是重複擾動指定參數 (例如元件偏心、傾斜),並計算在該條件下的 “Criterion” 是多少,並與原始設計或格相比分析。這個Criterion可以是易懂的物理參數,例如某個視場 (Field)、某個波長下的Spot Radius或Tangential MTF。也可以是多個相似的參數用某種方式平均,例如Tangential MTF與Sagittal MTF的平均,或是多個視場下的MTF平均 (通常是RMS)。甚至Criterion可以是經由複雜計算而來,不具實際物理意義。OpticStudio中有許多內建的Criterion,也提供完整的自訂功能讓使用者設計自訂

波前 (OPD) 怎麼算的

波前的計算當我們說波前時,事實上通常是指波前 “差”,或是光程差,指的是同一件事。OpticStudio預設使用出瞳作為波前差的計算參考。因此,當我們要計算一條光線的OPD時,此光線會從物面出發後一路追跡穿過光學系統,最終到達像面後,在循原方向後退追跡到 “參考球面”。此參考球面的球心是主光線與像面的交點,半徑是主光線與像面交點到主光線與出瞳面的焦點。然後我們就計算這條光線的總光程,並扣去主光線的光程 (因此主光線的光程差永遠為零,因為他本身就是零的參考點)。要驗證這個敘述,讓我們打開這個內建範例: \Documents\Zemax\Samples\Sequential\Objectives\Double Gauss 28 degree field.ZMX。讓我們在像面之前新增兩個面,第一個面的厚度給予設定求解 = Pupil Position,第二個面給予設定求解 = Pickup,設定為前一個面的厚度乘以-1。並指定第二個面的Radius為求解Pickup,一樣是前一個面的厚度乘以-1。第二個面就是我們所說的參考球面。目前為止設定如下:  然後我們在Merit Function中使用OPTH這個操作數驗證視場1、波長編號2,經過光瞳Py = -1位置的光線以及主光線,兩條光線在參考球面上的光程差。注意我除以波長編號2的波長 (wavelength),因此單位會是波長 (waves)。下面可以看到我們算出來是0.272387 (須乘以一千倍)。然後我們打開OPD Fan並設定如下圖,可以看到Py=-1的時候,波前差確實是-0.272387。現在讓我們來驗證看看離軸的視場,例如說我們想看最大的視場3。首先我們清空評價函數編輯器,然後先暫時把出瞳面的Radius設回無限大。輸入以下資料到評價函數中,目的是計算主光線在出瞳面上的位置、角度以及到像面所經過的光程。記住這三個數字:* Chief ray 在出瞳上的位置是1.651577781670081* Chief ray在出瞳空間中的角度是11.96474523412040* Chief ray從出瞳到像面的距離是110.4592649799319 接下來我們使用Tilt/Decenter工具來移動並傾斜出瞳,如下。然後可以看到系統自動加入兩個Coordinate Break以及相關設定,如下。最後在確保把Chief的

斜切光纖的模擬

此文章包含以下內容:* 前言* 範例1:Ball coupling* 範例2:Conic interconnect前言在計算光纖耦合時,我們事實上無法計算光在單模光纖內的傳播,只能計算雷射經過系統後,有多少能量可以順利進入到單模光纖並在內部穩定前進而 (理想上) 不耗損能量,也就是耦合的效率。無法計算光在單模光纖內部行為的原因是單模光纖的尺度接近耦合光的波長,屬於波導而不是單純的光導管,此時光線或自由空間的純量傳播 (POP) 計算都不正確。也因此在計算耦合效率時,我們需要先知道:符合什麼條件的光才能順利進入波導傳播。對於口徑較大的多模光纖來說,這個條件是每一條光線的入射角度必須在指定NA之內。但對於單模光纖,這個條件則是整個光束 (beam) 在單模光纖端口的複數振幅分布,也就是模態,必須符合一定分佈。當入射光到達此光纖入口切平面時,複數振幅分布中不符合該模態的部分會在光纖中傳播時消逝,而無法到達另一端。以未斜切的單模光纖來說,這個可傳播模態即是高斯分布。但在實務上,常常我們會考慮讓光纖端面斜切,這有許多好處,例如反射光不會回到雷射造成系統不穩。當光纖有斜切的時候,可接受的入射模態就會改變。嚴格意義上來說,必須使用專門的軟體求解,例如OptiWave。當這類軟體計算出一個特定複數振幅分布後,即可以輸入OpticStudio模擬並優化耦合透鏡。這是最理想的狀況。在 “如何匯入波導模態資料到 Zemax 中 (How to Get Real Waveguide Mode Data Into Zemax)” 這篇知識庫文章提供了在 OptiWave 軟體中計算出有斜切跟沒有斜切的SMF-28光纖模態,並示範怎麼匯入OpticStudio進行耦合效率計算。而當我們沒有任何方式可以取得斜切光纖的模態時,則需要一些近似計算。光纖端面有斜切時,對入射的光線來說會有稜鏡的效果,也就是光束進入光纖時會被折射,不再是正向進入光纖,造成耦合效率下降。理論上,只要我們能調整整個光纖的角度,讓光束折射後,正好是正向進入光纖,就可以重新提高耦合效率。以下我們將舉例說明如何用一個Tilted面以及像面的搭配來模擬斜切的稜鏡效應,並且說明如何加入光纖的旋轉來補償效率的下降。範例1:Ball coupling以下讓我們開啟範例檔:\Documents\Zemax\Samples\Sequentia

使用全像元件建立擴瞳光波導 (Exit Pupil Expansion)

在下面的文章中,我們介紹了如何建立一個使用表面浮雕光柵(SRG)的EPE裝置。然而,這文章的內容其實對全像光柵並不適用。How to simulate exit pupil expander (EPE) with diffractive optics for augmented reality (AR) system in OpticStudio: part 1OpticStudio目前內建使用的Kogelnik模型不能用於EPE波導系統。下面我們將解釋原因並提供一個變通的辦法,以及對應使用的DLL。注意這裡介紹的方法是基於一些假設的,因為本身一定會存在一些不確定性。下面會一併解釋。在Kogelnik的方法中,它假設全像底片的材料本身及其環境的折射率是相同的。即使在全像條紋形成後,平均折射率仍是相同的。 但問題就在這裡,實際上,我們的全像材料是塗在一個基板上的,基本有自己的折射率,而材料的另一個可能是另一個基本或直接接觸到空氣。總之折射率不可能一樣。 在這種狀況下,我們可以想像,光線在進入全像材料時,會先需要考慮折射,進入到全像區域,接著在全像區域內發生繞射,然後這些光線離開時,又要再經歷一次折射。注意這個模型主要是幫助理解,實際發生的狀況是光在這邊有複雜的干涉行為。但是這個模型大致上正確,很適合拿來解釋。依照剛剛說的方式運作,我們很快可以發現,在一些條件下,光線是可以被TIR而無法離開全像區域的。問題就是這個現象在Kogelnik方法中是沒有定義的,我們沒有一個非常理論化的方法去計算此時的繞射效率應該如何。 注意不只是反射式全像,穿透式也會發生這個問題。 另外不只是零階光,一階光也是會有這個問題。在附件的檔案中,我們用了兩個假設去加強Kogelnik方法的適用性。這兩個假設為如果一階繞射光不存在,則所有能量被零階光帶走。 如果零階光遇到TIR,那就走反射方向。模擬的結果如下:打開ZAR後,相應的DLL會被自動解壓縮到對應的資料夾。注意這個DLL有一些限制,如下:他是基於假設的,所以理論上有一些不確定性。 必須訂閱版授權才能使用。 這個DLL只能用在OpticStudio 21 或 22 版。如果有更多關於全像模擬的問題可以參考下面的文章。Simulating diffraction efficiency of a volume holographic gratin

用OpticStudio模擬微結構薄膜產生摩爾紋 (Moiré)

摘要:本範例將會示範如何在Zemax OpticStudio模擬微結構膜薄膜產生的圖案,包含以下部分:* 背景簡介* 範例1:柱狀透鏡陣列薄膜 (Lenticular Array Sheet) 交疊製造紋路* 範例2:雙面微透鏡陣列結構塑膠片的紋路產生作者:Michael Cheng文章發布時間:February 14, 2017背景簡介隨著近代射出射出與滾輪押出技術的進步,許多產品開始可以在量產層面上,製造塑膠片或薄膜上微米級的週期性微結構。例如液晶螢幕中常見的增亮膜 (Brightness Enhancement Film,以下簡稱BEF),就是一個很好的例子。當這些微結構片 (或貼膜) 相互交疊時,若是在適當的角度下,則會產生各種條紋圖案 (Moiré)。這些條紋,根據不同的應用,有時候是必須去除的,例如當BEF與V-cut導光板交疊時,如果同方向擺置,則微小的角度差,便有可能發生螢幕亮案變化的狀況。而在另一些應用中,有時候這些圖案則是故意設計、產生以製造表面質感的。例如Rowlux® (ROWLAND公司的註冊商標) 便是一種塑膠片,利用雙面微結構陣列製造出能隨不同角度變化圖案的立體質感。本文章將用兩個不同的範例,來說明如何模擬這些效應。範例1:柱狀透鏡陣列 (Lenticular Array) 薄膜交疊製造紋路本範例中,我們模擬兩片N-BK7玻璃平板,上面各自貼上一片柱狀透鏡陣列的PMMA薄膜。然後我們把這兩片平板錯開一個角度後,建立一個遠方來的光源,照射在此結構上,最後使用Paraxial Lens與一個探測器,模擬眼睛所看到的條紋。首先結構的部分,我們使用Toroidal Lens來製作柱狀透鏡單元,然後透過Array物件把此單元複製成微陣列結構。玻璃平板則透過Rectangular Volume這個物件完成。設定如下: 注意我們給兩個Toroidal Lens都設定了 “Do Not Draw This Object” 以及 “Rays Ignore Object: Always”,這兩個設定都是經由Object Properties對話框完成的。另外值得注意的是,物件5的Tilt About Z設定為5,表示兩個結構間相差5度,稍後我們會修改這個數值,觀察不同角度的變化。此外,我們需要給物件1指定曲面部分反射光線,如下圖: 打開Shaded Mod

Distortion Focal Length的定義 (ZPL範例)

本文章介紹了:    Field Curvature/Distortion分析的文字區塊中Distortion Focal Length的定義    使用Single Ray Trace驗證    介紹用ZPL中的PLOT、RAYTRACE指令    用ZPL簡單的驗證Distortion Focal Length的定義文章發布時間:September 23, 2015 系統分析功能中的Distortion Focal Length當我們在OpticStudio中打開Field Curvature/Distortion分析功能時,會在文字區塊中看到這個參數,有些使用者會好奇這是什麼參數,為什麼他與狀態列上的有效焦距EFFL不同。請開啟範例檔:\Zemax\Samples\Sequential\Objectives\Double Gauss 28 degree field.zmx請開啟Analyze Ribbon > Aberration > Field Curvature and Distortion,並記得在Settings中設定使用主波長2,也就是0.587 um。(這是為了與之後我們撰寫ZPL時使用相同的波長驗證)點擊一下視窗下方的Text標籤,並找到如下的Distortion focal length參數。 可以很輕易的發現他與整個主視窗下方的狀態列上的EFFL數值不同。  什麼是Distortion Focal Length要瞭解Distortion Focal Length,首先我們先查看Help檔案。 根據上面反白的文字,系統會先追跡小視場,然後其他較大視場的入射光線再根據Yref=f*TAN(theta)放大。其中f就是在小視場下計算的,我們可以用追跡工具Single Ray Trace簡單的驗證: (請注意波長為2)由於此範例最大視場為14度,因此Hy = 0.0001代表0.0014度,Px = Py = 0代表chief ray,可看到第7個面的像高為2.4271401744E-003。我們把公式轉換為f = Yref / TAN(theta) = 2.4271401744E-003 / TAN(0.0014 degree) = 99.3320630可發現與Field Curvature/Distortion分析功能文字區塊

Badge winners

  • Allow me to introduce myself
    Sean Turnerhas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    saifhas earned the badge Allow me to introduce myself
  • Visibly Un-Polarized
    chaasjeshas earned the badge Visibly Un-Polarized
  • Visibly Un-Polarized
    Sean Turnerhas earned the badge Visibly Un-Polarized
  • Allow me to introduce myself
    Davidhas earned the badge Allow me to introduce myself
Show all badges