• 58 Topics
  • 89 Replies

58 Topics

Zemax STAR模块的自白---【我是一个分析温度、形变对光学系统影响的工具】

欢迎大家的到来,期待大家的回复~~今天,让我们来花点时间让STAR这个小盆友做个全面的自我介绍如果听完自我介绍,想继续了解的盆友们,可以点击如下链接加入STAR User GroupSTAR User Community一同在其中讨论关于STAR的相关问题,分享使用它的乐趣,体会它每一点进步带来的喜悦初出茅庐的STAR可谓是今年涌现的黑马,一举成名,获得了2022 SPIE软件类“棱镜奖”  STAR 模块是什么? 简而言之,STAR 可以和它的小兄弟“FEA有限元分析软件”一起,让 OpticStudio 用户可以在 OpticStudio中采用全部的Analyze功能进行结构应力、 热对光学性能影响的分析。小兄弟负责获得FEA分析结果,剩下的部分STAR和OpticStudio完成。锦上添花的是,我们可以利用STAR 模块包含的 STAR-API programming功能,实现工作流自动化。  STAR 模块的优势在哪?  一句话概括,完成FEA 数据与光学表面准确匹配,并让其精确地反映到光学模型上。改善 STOP 分析的准确性 不同于使用 Zernike 多项式往往需要使用高阶项系数进行形变拟合,STAR 模块将使用数据拟合算法(piecewise spline fit )完成对表面的拟合。‎使用STAR导入的FEA形变数据包含position或者air gap(镜间距)的变化,因此,当用户采用STAR load FEA 数据时,他们既可以获得表面的位移量(RBMs :rigid body motions),也可以获得高阶形变量( higher-order deformations)。所以,STAR考虑了系统整体变化带来的影响(目前应力双折射效应的考量在roadmap中)。‎目前STAR拟合算法对于所有具有实际物理意义的表面都可以准确拟合,换而言之,我们不推荐对于类似近轴透镜(paraxial lens)或者一些相位面(phase surfaces)采用STAR仿真。 原始 FEA 数据仅用于生成数值拟合,拟合后的结果存储在.ZST 文件中用于后续光线追踪和在不同分析中显示结果。值得一提的是,区别于一些solution的点在于,有了STAR,FEA数据中非均匀格点将被支持:将 2D 表面形变转换为非均匀网格矢高数据将 3D 温度分布情况转换为非均匀折射率分布

关于OpticStudio中POP(物理光学传播)的那些事

欢迎大家的到来,期待大家的回复~~今天我们花点时间来认识下OS中的POP功能~对于POP(物理光学传播),在知识库文章中有如下几篇文章,可以让大家快速入门,且解决80%的POP使用问题。当然,Zemax Community里也有很多POP相关的精彩讨论。探索OpticStudio中的物理光学传播 – 中文帮助 (zemax.com)如何在OpticStudio中模拟激光光束传播:第三部分 使用物理光学传播来模拟高斯光束 – 中文帮助 (zemax.com)Using-Physical-Optics-Propagation-POP-Part-1-Inspecting-the-beamsUsing-Physical-Optics-Propagation-POP-Part-2-Inspecting-the-beam-intensitiesUsing-Physical-Optics-Propagation-POP-Part-3-Inspecting-the-beam-phasesPOP 中本质上传播的是每个采样点上具有 Ex/Ey 电场分布的传播矩阵,用于表征传播的光束波前,然后与系统中的各个光学表面进行相互作用。当光束传播到表面的时候,本质上会将波前分解成为 Probing Rays,计算这些 Probing Rays 传播过后的情况,从而对比初始 Probing Rays 计算出对应的 Transfer Function,结合表面位置的波前计算出传播该光学表面过后的结果波前。在这样的计算过程中,光学表面引起的像差、传播中的衍射效应等都可以考虑进入传播当中。总结下,POP的过程就是定义初始光束 > 用Pilot Beam指导自由空间传播 > 用Probing Ray指导穿越光学界面 > 在指定位置读取光束能量和相位数据。下面一篇公众号文章也进行了很好的说明~梳理一下Zemax POP的工作逻辑 关于POP的使用场景  POP VS. Huygens PSF POP is really only ‘better than’ the PSF (either FFT or Huygens) if there are significant apertures that clip the beam.The strength/weakness of POP is

显微镜照明光学系统设计案例分享

显微镜照明光学系统设计简介以下介绍显微镜的照明光学系统设计。显微镜的规格如下所示:放大倍率:10倍NA:0.2(CCD对角的1/2)视场数:8无限远校正系统(infinity corrected ): 12mm成像镜头焦点距离:200mm工作距离:45mm使用的光源:2mm NA=0.25光学系统的设计分为2类:成像系统 照明系统这里介绍的是照明系统的设计。暗场反射式照明用的非球面聚光镜设计作为暗场照明,为设置上一例中显微镜(成像系统)设计中的物镜,需要使用中心半径为8.5mm的中心遮蔽。最终的镜头数据以及布局图如下所示。在STOP表面上设置中心遮挡半径为8.5mm的孔径。这一部分是对暗场照明物镜的预设。在优化向导中,输入0.57遮蔽因子。表示中心遮蔽比例。本例中设置为中心遮蔽半径为8.5mm / 镜头半径15mm = 0.57 。所使用的评价函数如下所示。第1行 _  EFLY焦点距离设置为20mm。※与显微镜(成像系统)设计的物镜具有相同的焦距。第2行 _  REAB对于像面,指定主光线垂直入射。 对这个光学系统的照度分布进行模拟。在序列模式中可以进行简单的照度分布模拟。选择 分析 >扩展光源分析>几何图像模拟由于现在视场数据的定义是角度,视场大小的单位也是角度。文件选择“CIRCLE”,定义直径为4 ° 面光源。由于指定像面的大小为2,模拟结果表示直径为2mm的区域。结果显示选择为“Cross X”,以显示照度分布的截面图。进行分析之后的结果如下所示。半径0.4mm的范围内可读取到几乎一致的明亮度。在这里,将显微镜(成像系统)和显微镜(照明系统)设计的内容设置在一个文件内。成为显微镜的光学系统的设计案例。另外,该数据通过在多重结构中使用,可以根据结构在明场和暗场照明中进行切换。最终的镜头数据以及布局图如下所示。所使用的多重结构如下所示。在序列模式中使用多重结构。多个光学系统可同时进行定义。多重结结构1是明场照明的设定。使用显微镜(成像系统)设计的物镜数据。镜头数据编辑器中的数据如下所示。多重结构2是暗场照明的设定。使用的是显微镜(照明系统)设计的聚光镜数据。因此明场镜头数据被抑制。对该光学系统进行照度分布的模拟。选择分析 > 扩展光源分析 > 几何图像分析。明场照明(config1)中的照度分布如下所示。在0.64×0.48mm范围内可

关于Image Simulation图像模拟的二三事

欢迎大家的到来,期待大家的回复~~今天上午由高级应用工程师胡皓胜给大家带了一场关于【如何在OpticStudio中模拟图像质量】的精彩研讨会那么关于OS里的Image Simulation 图像模拟,大家可以一边回看着Haosheng的研讨会,一边看着我们的一篇知识库文章进行了同步理解~研讨会相关内容更新:如何进行图像仿真研讨会相关知识库文章:如何进行图像仿真一篇有趣的论坛案列分享(推荐~对于掌握image simulation很有帮助):Selecting Oversampling and Field height in IS | Zemax Community那使用过程中,大家常常遇到的问题解答如下问:什么是图像模拟?答:图像模拟工具通过将源位图文件与点扩散函数阵列进行卷积来模拟图像的形成。考虑的效应包括衍射,像差,畸变,相对照度,图像方向,偏振影响等。此工具有助于可视化所设计光学系统的图像质量。它提供了一种定性但直接的方法来评估成像系统的性能,并使客户更容易"看到"模拟的图像质量。问:图像模拟与几何图像分析?答:如果您的系统远未受到衍射限制,您可以使用几何图像分析 (GIA)。GIA 使用纯几何光线追踪,被认为是模拟图像的"黄金标准"。但是,如果您的系统受到衍射限制,则需要包括衍射效应。在这种情况下,您应该使用图像模拟。图像模拟使用惠更斯PSF与源位图进行卷积,以考虑衍射效应。值得注意的是,即使选择了 "像差:衍射",如果像差非常严重以至于无法准确计算衍射 PSF,分析仍可能自动切换到几何。 有关此内容的讨论列在帮助文件中。问:使用图像模拟的推荐方法是什么答:使用图像模拟工具时,建议使用视场角或物高来定义【Field Height视场高度】选项。对有限共轭系统使用"物高"(如下图所示,这点需要注意),对无限共轭系统可使用"视场角",因为这些字段类型明确定义了对象在图像空间中的大小和方向。当我们采用视场角来定义setting中的Field Height时我们需要注意,具体我们建议查看帮助文件:帮助文件中概述的使用视场角来定义的主要困难是视场角单位本质上是变形的。由于无限共轭系统不允许将物高作为定义,因此,如果您仍然希望使用物高来定义此处的Field Height,则可以使系统转换为有限共轭,方式是可以在前面添加一个近轴透镜paraxial lens。 问:图像模

OpticStudio内的通用画图工具介绍-Universal Plot

 欢迎大家的到来今天我们花点时间来认识下,OpticStudio里一个好用但有可能被遗忘的绘图小工具:Universal Plot。Universal Plot 是存在于专业版和旗舰版的通用绘图工具: 它是可以应用在序列或者非序列模式下,以任意表面参数,系统参数,多重结构或者非序列参数为变量(横轴),以优化操作数作为因变量(纵轴)的绘图工具。     换句话说,只要是能以优化操作数提取的信息,都可以作为纵轴的输出。   关于因变量(Dependent Variable)的选择,可以分为两种方式:方式1: 直接采用操作数,然后设置对应参数(下图左) 方式2:选择Merit,然后选择Merit Function Editor 中你想使用的对应行(下图右)  Universal Plot 有一维和二维可供选择,二维可以有两个变量(X,Y),一个因变量(Z)  希望这个工具可以在大家日常的设计输出或者评估中发挥作用下面我们来讨论下关于Universal Plot几个常见的问题:  采用POPD,IMAE等操作数作为因变量时,画出来的曲线感觉跟设置对不上? 如果遇到这类问题,大家可以看下Help File帮助文档里有没有对这个操作数的使用提醒    比如POPD的使用,需要设定后点击Save, 之后再用Universal Plot信息就会更新了。IMAE也是类似的操作。   采用NSDD操作数时, Universal Plot 无响应? NSDD操作数在Universal Plot的使用,须采用上述的方法二,即采用Merit方式, 且设置上需要搭配其他操作数,如NSTR一起,可以参考以下文章所描述的方法如何在Universal Plot中使用NSDD操作数  如果我想在Universal Plot中引入优化后的结果作为因变量(Dependent Variable),我应该怎么做? 首先明确的是,Universal Plot的工作流程是将变量X带入系统,算出对应的Y值,中间不涉及任何的优化过程。但如果想把优化引入之中,可以采用ZPLM。关于ZPLM也有些需要注意的地方,比如在ZPLM中采用GETT,再优化或者使用Universal Plot ,会遇到问题,可以参考下面有趣的讨论:如何在Universal Plot中引入ZPLM当然,这种方式的分析可能需要更长的时间来计算,因为必

Ansys Zemax STAR与Ansys Mechanical/Fluent的跨界合作

 欢迎大家的到来~🥂😊之前我们已经认识了STAR模块(Zemax STAR模块的自白---【我是一个分析温度、形变对光学系统影响的工具】 | Zemax Community),对于整个工作流来讲,OpticStudio,STAR模块与其他Ansys工具的集成可以使工作流程得以简化且保证了精度。对STAR感兴趣的盆友可以点击如下链接加入STAR User Group,相关STAR的信息都会更新在其中STAR User Community我们以高能激光的案例再来说明下这个工作流:光学系统的设计(分析、优化、公差分析等):Ansys Zemax OpticStudio在OpticStudio中完成光学设计后,对于光机设计,可参与构建 CAD 和其他机械组件的Ansys软件:Zemax OpticsBuilder,SpaceClaim等,具体选择取决于具体情况。导出设计以进行 FEA 分析。将OpticStudio和CAD的组件导入Ansys Mechanical进行热或应力条件下的有限元仿真分析(初始条件也可以导入)。 定义网格并在感兴趣区域使用更精细的网格应用网格控制,以获得更好的保真度,而不太重要的区域使用稀疏网格,从而加快处理速度。OpticStudio STAR模块具有的一大优势是可以应用于光学元件的网格控制,STAR能够导入非均匀数据。    接下来,我们使用Ansys Mechanical进行瞬态分析,可同时查看机械和光学组件。绘制单个或多个组件的图表,如下图。  当然,也可以结合Ansys Fluent做相关的流体分析:  在运行包括结构,热,CFD等在内的研究之后,通过STAR模块将其完整地带到OpticStudio。要尽可能轻松地执行此操作,请尝试使用Ansys WorkBench的ACT文件扩展,它允许以STAR要求的格式导出数据。从零件树或屏幕中选择光学元件,单击鼠标右键,然后从下拉列表中选择导出到 STAR。  将相应数据利用STAR导入 OpticStudio 中 ,并进行相关分析: 

[网络研讨会] Zemax集成化光学系统模拟整体解决方案 – 高能激光系统示例

感谢大家对 Zemax 的关注与支持!我们将在以下时间开展本次的网络研讨会,您可以通过以下链接进行本研讨会的注册。并且,您可以在我们全新的 Zemax 社区论坛上,事先或者结束后针对本次研讨会的内容对演讲者进行提问,也请自由留言进行交流。  时间:2021年9月15日(周三)14:00-15:00 参与链接:https://register.gotowebinar.com/register/7595644445225320718 内容摘要: 在现实的光学系统中,热效应和结构形变对于光学系统性能有着很大的影响。在这次的研讨会上,以高能激光光学系统为例,介绍使用 OpticStudio 设计光学系统、使用 OpticsBuilder 进行机械元件建模,使用 STAR 模块结合 FEA 分析数据应用于光学系统进行综合性能评价,其中将包含以实际文件为基础的演示操作。需要进行热效应和结构形变分析的复杂光学系统性能整体分析,通常都是光学设计与分析领域的痛点,本次研讨会将为您带来全新的解决方案 - 基于 OpticStudio 的 STAR 模块。该模块于 2021 年 5 月载入至 OpticStudio 21.2 版本中,可以将分析得到的 FEA 数据应用至光学系统中的各元件表面上,拟合后对于系统进行整体的光学性能分析,无缝完成所有所需操作。 本次研讨会已结束,录制视频获取地址:https://www.zemax.net.cn/blogs/webinars/high-powered-lasers 演示者: 光学工程师 胡皓胜,Zemax 中国

Fizeau干涉仪模拟实例

本文为翻译帖,作者是Kensuke Hiraka。原文链接(含附件):フィゾー干渉計のシミュレーションについて | Zemax Community本节介绍一个Fizeau干涉仪的模拟实例。干涉仪有多种类型,这里介绍的Fizeau干涉仪是一种干涉仪,广泛用于测量光学元件和透射波面的表面精度。 这里我们介绍一个使用Fizeau干涉仪来测量透镜的透射波面变形的例子。以下是被测试的系统。 使用一个有效直径为50毫米、焦距为578毫米的平凸透镜。为了表示不对称的像差,用Zernike条纹相位面来增加像散和慧差像差。 还使用了-0.7的圆锥系数。 平凸透镜会导致大的球差。下图是镜头数据编辑器。 背面的焦点是571.982毫米。以下是光路图。可以使用分析->波前图对波前进行分析。下图展示的是波前图的分析结果。波前PV值 0.3821λ、RMS 0.0881λ。接下来,对Fizeau干涉仪进行建模。 要建立一个含有 "平面光源 "的Fizeau干涉仪模型(即发射准直光),选择 "无焦像空间 "复选框并进入无焦模式,如下图所示。在对 "球面原型 "进行建模时(在这里发出会聚光),请将镜头置于正常焦距模式。镜头数据编辑器如下图所示。 在测试透镜后面放一个凸面镜反射光线,这样光线就会重新进入测试透镜。 应注意以下两点:1. 从测试镜头到凸面镜的距离应该是测试镜头的后焦点(571.982毫米)减去凸面镜的曲率半径(本例中为300毫米)。2.尽可能多地拾取数据,以确保在待测数据发生变化时,回程的数据相应变化。 各种系数也被拾取。模型完成后的光路图如下所示。检查波前像差图。可以看出,波前像差为0.7642λpv和0.1762λRMS,是单透镜的两倍。 也可以看出,不对称像差没有问题(因为往返的光通量通过被测镜头上的同一个地方)。因此,Fizeau干涉仪输出值的1/2是被测透镜本身的波前像差。此外还可以使用下图的干涉图分析功能进行波前分析:放大率被设置为1。 帮助文件指出,对于双通道光学系统,放大率应设置为2,但这是在双通道光学系统被建模为简化的单通道时。 如果像本例中那样对整个双通道进行建模,则应将放大率设为1。

[网络研讨会] 使用Zemax OpticStudio与Lumerical RCWA动态连结来设计并优化光波导

感谢大家长期以来对 Zemax 的关注与支持!我们将在以下时间开展本次的网络研讨会,您可以通过以下链接进行本研讨会的注册。并且,您可以在我们全新的 Zemax 社区论坛上,事先或者结束后针对本次研讨会的内容对演讲者进行提问,也请自由留言进行交流。时间:2022年7月21日(周四)9:00 PM - 9:45 PM (GMT+8)2022年7月22日(周五)2:00 AM - 2:45 AM (GMT+8)参与链接: https://register.gotowebinar.com/rt/1317253837013918220?source=Zemax内容摘要:这些年来,增强现实(AR)设备的市场一直在增长,并继续加快这一进程。在许多不同类型的设计中,衍射波导成为市场上最重要的主流之一。在这次网络研讨会上,我们将介绍一个设计和优化波导的工作流程解决方案,它也被称为出瞳扩展器。在这个工作流程中,首先在Lumerical环境中设计和分析最初的一维或二维光栅。该光栅可以被参数化,其中的几何形状由一些用戶定义的参数控制。在光线追踪过程中,OpticStudio在后台通过API自动调用Lumerical RCWA,以求解光栅的电场响应。操作过程中,Lumerical的参数通过这个API显示在OpticStudio用户界面中。我们将演示用户如何从OpticStudio用户界面改变光栅的几何形状,并触发Lumerical自动计算新数据。还会演示一个简单的优化例子。演示者:Michael ChengKyle Johnson 

中继聚光镜系统设计

此文为翻译帖,原文以及附件参考:リレーコンデンサーレンズの設計例について | Zemax Community中继聚光镜系统是照明光学中的基本光学系统。 它的特点是,即使在光源亮度不均匀的情况下,也能实现均匀照明,而且没有能量损失。中继聚光镜系统具有出色的功能。 中继聚光镜光学元件使用两个透镜。第一个镜头被称为聚光镜。它的目的是收集光线,它被设计成在第二个镜头上方形成一个光源的图像。第二个镜头被称为中继镜头,其目的是将第一个镜头的图像引导到受照面。 亮度不均匀的光源是,例如,灯丝和放电管。这些光源的亮度不均匀,但光的分布是均匀的。 一个放置在离光源一定距离的聚光镜被均匀地照亮。通过用中继透镜投射均匀的表面,可以看到被照射的表面也变得均匀照亮。通过将所有入射到聚光镜上的能量转移到中继透镜中来防止能量损失。 最终的镜头数据和布局图如下所示。 最左边的镜头是光源。第一个镜头是聚光镜。第二个镜头是一个中继镜头。 右侧的一端是照明面。 光源很小,如果光源中包括反射元件,得到的光源大小为反射元件的光学尺寸,光源的出瞳即反射系统的出瞳。 中继式聚光镜系统的特点是物面与聚光镜重合。考虑一下OpticStudio中的镜头编辑器是如何组装的。 第一个平面是光阑,它被看作是光源。换句话说,光阑的位置被指定为与物体平面的负距离。与聚光镜使用的是相同的距离。 聚光镜的表面与物体平面对齐,因此可以采用优化方法来减少点斑。然而,应该注意的是,角度过大会导致低照度。 检查为该项目设计的中继式聚光镜系统的照度分布。这是因为聚光镜是圆形的,所以辐照形状也是圆形的。如果聚光镜是矩形的,那么照射形状也将是矩形的。 选择分析→扩展光源分析→几何光学图像分析。有一种复眼透镜,就是由多个上述系统拼合而成。

结合Lumerical和Zemax,一起结伴学习Computational Electromagnetics(计算电磁学)吧

好久不见,关注微纳光学的盆友们应该有关注到目前Lumerical+Zemax的联合解决方案,在7/8月份,我们有两场联合的研讨会,大家可以点开以下链接回看研讨会视频:Zemax 和 Lumerical 工作流程第 1 部分 - 从微观到宏观的光学仿真 (ansys.com.cn)Zemax 和 Lumerical 工作流程第 2 部分- 从微观到宏观的光学仿真 (ansys.com.cn)结合Lumerical和Zemax, 针对不同领域涉及到微观和宏观的系统,我们都可以尝试用此联合方案解决您遇到的仿真和设计问题🥂马上在10月份我们即将正式推出Lumerical+Zemax的RCWA动态链接solution,相信无缝串联的solution可以为大家的设计和仿真带来极大的便利,比如在AR衍射光波导的设计,或者手机摄像头花瓣鬼影的仿真等下面这个研讨会,由Zemax RCWA 设计者Michael Cheng 和Lumerical Zheng Zhou带来,详细介绍了这个新功能,大家可以先睹为快,有任何问题也欢迎提问:使用Zemax OpticStudio与Lumerical RCWA动态连结来设计并优化光波导 (ansys.com.cn)当然大家也可以在此网站内搜索关键词,比如RCWA,或者Meta等来获取相关的知识库文章或者资料分享~Connect with your fellow Zemax-ers | Zemax Community最近我们组内在学习讨论计算电磁学,参考的以下内容,深入简出,可学性很高,欢迎大家跟我们一起来学习哦~~当然可以搭配视频资源, 下面链接里是相关的PDF学习资源~https://empossible.net/academics/emp5337/ 欢迎大家加入学习队伍,一起进步哦~~~啊哈,还有个事,9月份Ansys 光学全线产品Lumerical+Zemax+Speos 会参加深圳CIOE光博会,组内专家全员出动,多个technical talk准备中,欢迎大家关注[Ansys光电大本营]公众号,我们会发布CIOE动态我们深圳见~ 

Badge winners

  • Visibly Un-Polarized
    Sean Turnerhas earned the badge Visibly Un-Polarized
  • Allow me to introduce myself
    Davidhas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    Toshihirohas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    MostPeyshas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    Brian.Catanzarohas earned the badge Allow me to introduce myself
Show all badges