Skip to main content
235 Topics

摘要:這篇文章示範了如何輸入量測資料到Zemax OpticStudio中的Grid Sag,表面起伏資料應為Z座標的sag。原文作者:永田信一さん原文發布時間:Feb 7, 2009假設我們有如下資料 表面起伏資料的定義如下。第一行,由7個數字表示。第1, 2個數字,代表X與Y方向的資料數量,資料形式為整數。第3, 4個數字,代表X與Y方向的資料間距,資料形式為浮點數。第5個數字,代表資料的單位,0表示單位是mm。第6, 7個數字,代表整體資料點的偏心量,資料形式為浮點數。第二之後的資料格式如下,z dz/dx dz/dy d2z/dxdy每行都是如上的資料,資料形式為浮點數。z代表sag值。dz/dx dz/dy代表X與Y方向的微分值。d2z/dxdy代表交叉微分值。資料最少需要5x5個點。在Grid Sag面的設定中,若指定使用Bicubic-spline內插的情況,為了使資料點之間sag的內插結果平滑,必須要輸入微分值。但是,若設定所有的微分值為0,或是該資料留白不輸入,Zemax會自訂使用有限差分法 (Finite Difference Method) 來計算微分值。資料的紀錄順序如下:1.    從的面的左上角,也就是Xmin、Ymax開始。2.    下一個輸入的資料是該點的右邊一個值 (就是X方向加一個間隔)。3.    第一行結束後,往地第二行左邊開頭繼續。4.    填滿時,最後一個數字應為Xmax、YminSag資料的基準面不只是平面,也可以是球面、圓錐曲面或是非球面。檔案的副檔名方面,若是在序列模式,應為 “.DAT”,若是在非序列模式,應為 “.GRD”。在序列模式下定義這個面時,面的型態為 “Grid Sag”。曲率半徑、圓錐係數以及非球面係數可以用來定義輸入資料的基礎面。上圖中看到的參數0,代表sag資料的內插形式,0表示Bicubic-spline,1表示線性內插。 輸入的方式,請將 .DAT 檔置於 “\Documents\Zemax\Objects\Grid Files” 資料夾中。請開啟鏡頭數據編輯器,選擇Grid Sag面,並打開面屬性對話框 (Surface Properties)。然後選取您的 .DAT檔,點選 Import,點擊 OK 輸入。資料輸入後,如果想要檢視輸入結果的話,請選擇 “Ribon工具列 > An

在OpticStudio中,我們有下面的同調長度模擬功能。這個功能的基本原理是依據相應頻譜,亂數擾動每一條光線的波長來達到考慮頻譜的目的。但在這篇文章說,我們要要紹另一種方法。這個方法假設不同波長的光線無法互相干涉。由於光波的頻率非常高,高過幾乎所有sensor能偵測的極限,這個假設基本上可以說是正確的。基於這個假設,我們可以得到一個結論,就是對於一個有多波長的光源,其干涉結果的計算其實就單純是每個波長各自把干涉圖案算出來後,直接把照度用對應權重相加。下面有對於不同波長為什麼不同互相干涉,用比較數學的形式去解釋。 目前沒有工具可以分別計算個別波長的干涉圖形並相加,因此我們要利用MATLAB透過ZOS-API來自動化這一過程。各位可以打開附件的麥克森干涉儀的檔案如下。注意光源的Coherence Length是設為0,這邊我們不使用內建功能,設為0代表關閉。首先在允許OpticStudio被連結下面螢光筆圈起來的地方需要使用者自己設定。detnum代表你要觀察繞射圖形的Detector Rectangle的物件編號。 wavenum是光源的參數Wavenumber,建議是明確指定對應的波長編號,而不要用預設0。   n_smooth的使用方式跟Detector Viewer中的同名參數一樣。   wave_FWHM是高斯分布的半高全寬,我們這裡假設光源頻譜是高斯分布。一般來說這對於LED或LD都是大致正確的。 wave_center是高斯分布的中心波長。注意因為高斯分布其實是在頻率空間,所以在波長空間中劃出來看起來會像是有點歪的樣子。 spect_samp是你想要取樣頻譜的點數量。取越多越準確,但是越慢。 以下是模擬結果。 Enjoy!

本文介绍室内照明(天花板顶灯),在室内人眼所看到的情况的模拟示例。上一篇文章中,我们创建了照亮房间的照明部分。我们将从创建家具开始。 家具制作使用Part Desginer功能创建房间家具。下面是沙发的示例。 同样,创建(带电视支架)电视、窗帘、桌子和椅子。各自创建膜层数据。反射率可以自由设置。下面是用于沙发的示例。同样,创建多个膜层。这里创建的膜层,分配如下。 Sofa       :沙发和椅子的座位部分。WOOD :桌子、椅子和电视支架。Curtain :窗帘。各波长对应的反射率如下图所示。◆Sofa◆WOOD◆Curtain对物体表面进行分组在“分析”选项卡的物体编辑器中打开物体。将使用同一膜层的表面转换为同一面组。通过为每个面组设置膜层属性,可以省去为每个表面设置的麻烦。通过如上的设置,椅子的面0使用WOOD膜层,Lambertian 散射。 模拟人眼在室内所见人眼所见的模拟方法如下:使用镜头。 使用RayRotator。 但是,如果使用透镜,由于景深较浅的缘故,整个房间因为离焦无法反射成清晰像。要实现模拟是困难的。 另外,使用 RayRotator 时,需要将光源放在相机内部,无法显示安装在室内的光源照亮室内的亮度情况。 因此,像针孔照相机那样景深深,光源可以放置在相机外部的方式进行模拟。下图是非序列元件编辑器中的信息。Object1:光源。    Object2:通过(颜色)探测器探测图像。    Object3:针孔相机的外壳。   Object 4:0.2mm×0.2mm 物体。使用重点采样,因此十分重要。  Object 5- 10 :房间四周的墙壁。Object 12-16:设置的家具。 相机部分的设定如下所示。物体2是探测器物体。物体 4 设置为非常小的矩形。 然后,在“重点采样”中,光线指向该物体后汇集,并记录在探测器中。 只有通过物体4光线才能到物体3(物体3是相机外壳),为设置光线不直接进入探测器,物体3属性为吸收。 该方法与针孔相机原理相同,它就像在探测器上投射室内图像一样。从物体 3 到探测器的距离会影响透视。 越短,透视就越突出。在此示例中设置为 50mm,在此情况下,透视感自然。物体4作为散射表面,设置重点采样。这样,被照射的物体上散射的所有光线都可以指向物体 4。然而,这种情况下,墙壁和地板上反射的光不能再次照亮房间。因此,我们

系统介绍该系统是由一个扩束模块和一个光束会聚模块构成。一束宽度为Φ2mm的高斯光束,首先经扩束镜扩束,然后被会聚透镜聚焦。我需要确认会聚透镜焦面位置,或是离焦位置处的光斑形状和尺寸。我设计了两个不同扩束比的扩束镜,8X和80X。光束会聚模块的设计是固定的,焦距为120mm。这里我将使用8X扩束镜的系统称为小NA系统,将使用80X扩束镜的系统称为大NA系统。 问题描述对于小NA系统,POP模拟结果看上去比较合理,POP report中也没有出现任何warning。但是,在大NA系统中,模拟光斑周围出现了非常明显的artifact,类似一圈圈衍射环。 而且,在POP report中出现了非常多的warning,warning总共有两种:**** WARNING: Pilot beam waist smaller than wavelength detected, scalar diffraction propagation algorithms may be inaccurate.**** WARNING: Transfer function may have too many waves of phase to accurately model beam.我的问题是:1)这些warning对模拟结果的影响是否可以忽略?2)如果不可忽略,我需要怎样设置才能决这些问题。 参考资料通过在论坛中查阅资料,有一个帖子所讨论的内容,和我的问题很像。但比较可惜的是,回复中仅说明POP在处理fast beam上是不太合适的,未能提供一些其他的Zemax分析工具或方法,来分析衍射效应对聚焦光斑尺寸或形状的影响。参考资料:POP for "fast" beams像在本系统中,我确实需要评估系统在大NA情况下,衍射效应对光斑形状、尺寸的影响,如果POP不适合处理fast beam,那有没有其他推荐的方法用于分析? 

感谢大家长期以来对 Zemax 的关注与支持!我们将在以下时间开展本次的网络研讨会,您可以通过以下链接进行本研讨会的注册。并且,您可以在我们全新的 Zemax 社区论坛上,事先或者结束后针对本次研讨会的内容对演讲者进行提问,也请自由留言进行交流。  时间:2022年5月25日(周三) 14:00-15:00 参与链接: https://attendee.gotowebinar.com/register/1819028061812850699?source=community 内容摘要: 在如今光学系统设计中,热效应和结构形变对于光学系统性能有着很大的影响。在本次研讨会中,我们将以全面介绍如何使用 OpticStudio 设计光学系统、并随后使用 OpticsBuilder 进行机械元件建模,最后结合 STAR 模块整合 FEA 分析数据应用于光学系统进行综合性能评价,作为如今 Zemax 旗下产品的完整应用流程。同时,我们也将使用高能激光系统为例,包含实际的文件做出基础的演示操作,帮助您更加直观地了解该操作流程中的详细细节。 需要进行热效应和结构形变分析的复杂光学系统性能整体分析,通常都是光学设计与分析领域的痛点,本次研讨会将为您带来全新的解决方案 - 基于 OpticStudio 的 STAR 模块。该模块于 2021 年 5 月载入至 OpticStudio 21.2 版本中,可以将分析得到的 FEA 数据应用至光学系统中的各元件表面上,拟合后对于系统进行整体的光学性能分析,无缝完成所有所需操作。 演示者: 高级应用工程师 胡皓胜,Ansys Zemax 中国

Badge winners

Show all badges