233 Topics

【Q&A】使用Zemax软件更快实现立方体卫星的设计与迭代

感谢大家对 Zemax 的关注与支持!我们将在以下时间开展本次的网络研讨会,您可以通过以下链接进行本研讨会的注册。并且,您可以在 Zemax 社区论坛上,事先或者在研讨会结束后针对本次研讨会内容对演讲者进行提问,感谢您对于本次主题的关注! 时间:2022年4月20日(周三)14:00-14:45 参与链接: https://register.gotowebinar.com/register/6742589453100818955?source=community 内容摘要:“立方体卫星(CubeSats)”纳卫星被用于微型技术的在轨演示、小型有效载荷主导的任务以及科普教育活动中。这类卫星通常设计为立方体单元1U cubes(=10 cm x 10cm x 10cm)标准化尺寸,随载荷卫星尺寸可在1U到6U之间变化。由于这类卫星的部署成本较低,常被用作航天领域基于太空的光学系统低成本解决方案。立方体卫星的设计流程包含系统光学设计,封装光机结构设计,在轨运行结构和热的影响。本次研讨会中,我们会展示Zemax的一系列软件是如何应用在CubeSat设计的各个流程。我们首先利用Zemax OpticStudio进行光学部分的设计,并利用Zemax OpticsBuilder将光机固定件应用到设计中,利用Ansys软件执行FEA分析,并展示如何利用OpticStudio的STAR模块使用FEA数据检视对系统的影响。通过本次研讨会您将了解到如何把这些离散的模拟步骤整合到Zemax软件当中。 演讲者:张玲,Ansys Zemax 高级应用工程师

詢問工程師系列: OpticStudio-CAD interoperability and OpticsBuilder

各位好,歡迎來到Zemax論壇舉辦的活動:詢問工程系列。在這個系列中,我們會讓所有論壇用戶在一定時間內,把您想詢問的問題放上來。等問題收集完,我們的工程師會逐個回答大家的問題。主題:OpticStudio-CAD interoperability and OpticsBuilder時間:3/30~4/14Engineer:​​@Flurin Herren - Application Engineer II at Ansys Zemax主題簡介:To turn optical designs into reality, teams of optical and mechanical engineers need to coordinate their individual expertise around one common goal. In order to convert optical designs into CAD Zemax offers different approaches. I am happy to answer question about that in this month`s "Ask an Engineer" Event. Please ask your questions on Zemax OpticsBuilder, CAD Files Export tools, CAD Parts in Zemax OpticStudio and optomechanical workflows in general.對CAD有興趣的,這是一個很棒的機會跟Zemax內部工程師交流。從現在起到活動結束,將問題以回復的形式回給這個主題。可以用英語、日語、中文自由發問。加入討論的問題將在4月14日太平洋時間上午8點開始回答。一旦活動結束,該主題將被關閉。 如果你的問題涉及到一個特定的文件,該問題可能會被轉移到一個私人支援工單。在這種情況下,可能會需要你的授權處於技援狀態。Ask an Engineer: OpticStudio-CAD interoperability and OpticsBuilder

论坛用户级别与徽章详情页面F.A.Q.

用户级别和要求下表列出了 Zemax 社区中提供的不同用户级别。用户可以通过发表评论、主题和回答问题来提升级别。用户必须满足成就 1 或 2 或 3 的要求才能提高其级别。 用户级别 成就 1 成就 2 成就 3 Dark Energy (暗物质)       Single Emitter (单发射器) 发布1 条评论 发布 1 个话题 收到 1 个赞 Monochrome (单色光) 发布 1 条评论 + 2 个话题 发布 5 条评论   Infrared (红外光) 发布 5 条评论 + 3 个话题 发布 10 条评论   Visible (可见光) 发布 15 条评论 + 5 个话题 发布 25 条评论   Ultraviolet (紫外光) 发布 25 条评论 + 10 个话题 发布 50 条评论   Fully spectral (全光谱) 发布 50 条评论 + 15 个话题 + 1 个回答 发布 100 条评论 + 1个答案   En-Lightened (发光体) 发布 100 条评论 + 25 个话题 + 3 个回答 发布 200 条评论 + 3个答案 50个答案 Luminary (超级发光体) 发布 500 条评论 + 100 个话题 + 10 个回答 100 个回答     徽章和要求根据用户在社区的活动,我们会为用户自动授予或由 Zemax 员工为用户手动授予徽章。您在 Zemax 社区可以获得的徽章列表如下: 徽章称号 条件 Product Expert (产品专家) 由 Zemax 员工手动授予给在社区内非常活跃的用户。例如经常在社区发帖,在 Envision 用户交流会上进行演讲,或撰写知识库文章等。 Envision Presenter (Envision 演讲嘉宾) 作为演讲嘉宾出席 Envision 用户交流会 (从2020 年开始) Founding Member (创始成员) 成为 Zemax 产品的用户超过 10 年 Student Superstar (学生巨星) 在社区达到可见光级别并拥有 Z-GAP 授权 Allow me to intr

关于Image Simulation图像模拟的二三事

欢迎大家的到来,期待大家的回复~~今天上午由高级应用工程师胡皓胜给大家带了一场关于【如何在OpticStudio中模拟图像质量】的精彩研讨会那么关于OS里的Image Simulation 图像模拟,大家可以一边回看着Haosheng的研讨会,一边看着我们的一篇知识库文章进行了同步理解~研讨会相关内容更新:如何进行图像仿真研讨会相关知识库文章:如何进行图像仿真一篇有趣的论坛案列分享(推荐~对于掌握image simulation很有帮助):Selecting Oversampling and Field height in IS | Zemax Community那使用过程中,大家常常遇到的问题解答如下问:什么是图像模拟?答:图像模拟工具通过将源位图文件与点扩散函数阵列进行卷积来模拟图像的形成。考虑的效应包括衍射,像差,畸变,相对照度,图像方向,偏振影响等。此工具有助于可视化所设计光学系统的图像质量。它提供了一种定性但直接的方法来评估成像系统的性能,并使客户更容易"看到"模拟的图像质量。问:图像模拟与几何图像分析?答:如果您的系统远未受到衍射限制,您可以使用几何图像分析 (GIA)。GIA 使用纯几何光线追踪,被认为是模拟图像的"黄金标准"。但是,如果您的系统受到衍射限制,则需要包括衍射效应。在这种情况下,您应该使用图像模拟。图像模拟使用惠更斯PSF与源位图进行卷积,以考虑衍射效应。值得注意的是,即使选择了 "像差:衍射",如果像差非常严重以至于无法准确计算衍射 PSF,分析仍可能自动切换到几何。 有关此内容的讨论列在帮助文件中。问:使用图像模拟的推荐方法是什么答:使用图像模拟工具时,建议使用视场角或物高来定义【Field Height视场高度】选项。对有限共轭系统使用"物高"(如下图所示,这点需要注意),对无限共轭系统可使用"视场角",因为这些字段类型明确定义了对象在图像空间中的大小和方向。当我们采用视场角来定义setting中的Field Height时我们需要注意,具体我们建议查看帮助文件:帮助文件中概述的使用视场角来定义的主要困难是视场角单位本质上是变形的。由于无限共轭系统不允许将物高作为定义,因此,如果您仍然希望使用物高来定义此处的Field Height,则可以使系统转换为有限共轭,方式是可以在前面添加一个近轴透镜paraxial lens。 问:图像模

使用全像元件建立擴瞳光波導 (Exit Pupil Expansion)

在下面的文章中,我們介紹了如何建立一個使用表面浮雕光柵(SRG)的EPE裝置。然而,這文章的內容其實對全像光柵並不適用。How to simulate exit pupil expander (EPE) with diffractive optics for augmented reality (AR) system in OpticStudio: part 1OpticStudio目前內建使用的Kogelnik模型不能用於EPE波導系統。下面我們將解釋原因並提供一個變通的辦法,以及對應使用的DLL。注意這裡介紹的方法是基於一些假設的,因為本身一定會存在一些不確定性。下面會一併解釋。在Kogelnik的方法中,它假設全像底片的材料本身及其環境的折射率是相同的。即使在全像條紋形成後,平均折射率仍是相同的。 但問題就在這裡,實際上,我們的全像材料是塗在一個基板上的,基本有自己的折射率,而材料的另一個可能是另一個基本或直接接觸到空氣。總之折射率不可能一樣。 在這種狀況下,我們可以想像,光線在進入全像材料時,會先需要考慮折射,進入到全像區域,接著在全像區域內發生繞射,然後這些光線離開時,又要再經歷一次折射。注意這個模型主要是幫助理解,實際發生的狀況是光在這邊有複雜的干涉行為。但是這個模型大致上正確,很適合拿來解釋。依照剛剛說的方式運作,我們很快可以發現,在一些條件下,光線是可以被TIR而無法離開全像區域的。問題就是這個現象在Kogelnik方法中是沒有定義的,我們沒有一個非常理論化的方法去計算此時的繞射效率應該如何。 注意不只是反射式全像,穿透式也會發生這個問題。 另外不只是零階光,一階光也是會有這個問題。在附件的檔案中,我們用了兩個假設去加強Kogelnik方法的適用性。這兩個假設為如果一階繞射光不存在,則所有能量被零階光帶走。 如果零階光遇到TIR,那就走反射方向。模擬的結果如下:打開ZAR後,相應的DLL會被自動解壓縮到對應的資料夾。注意這個DLL有一些限制,如下:他是基於假設的,所以理論上有一些不確定性。 必須訂閱版授權才能使用。 這個DLL只能用在OpticStudio 21 或 22 版。如果有更多關於全像模擬的問題可以參考下面的文章。Simulating diffraction efficiency of a volume holographic gratin

模擬同調長度(Coherence Length)的另一種方式

在OpticStudio中,我們有下面的同調長度模擬功能。這個功能的基本原理是依據相應頻譜,亂數擾動每一條光線的波長來達到考慮頻譜的目的。但在這篇文章說,我們要要紹另一種方法。這個方法假設不同波長的光線無法互相干涉。由於光波的頻率非常高,高過幾乎所有sensor能偵測的極限,這個假設基本上可以說是正確的。基於這個假設,我們可以得到一個結論,就是對於一個有多波長的光源,其干涉結果的計算其實就單純是每個波長各自把干涉圖案算出來後,直接把照度用對應權重相加。下面有對於不同波長為什麼不同互相干涉,用比較數學的形式去解釋。 目前沒有工具可以分別計算個別波長的干涉圖形並相加,因此我們要利用MATLAB透過ZOS-API來自動化這一過程。各位可以打開附件的麥克森干涉儀的檔案如下。注意光源的Coherence Length是設為0,這邊我們不使用內建功能,設為0代表關閉。首先在允許OpticStudio被連結下面螢光筆圈起來的地方需要使用者自己設定。detnum代表你要觀察繞射圖形的Detector Rectangle的物件編號。 wavenum是光源的參數Wavenumber,建議是明確指定對應的波長編號,而不要用預設0。   n_smooth的使用方式跟Detector Viewer中的同名參數一樣。   wave_FWHM是高斯分布的半高全寬,我們這裡假設光源頻譜是高斯分布。一般來說這對於LED或LD都是大致正確的。 wave_center是高斯分布的中心波長。注意因為高斯分布其實是在頻率空間,所以在波長空間中劃出來看起來會像是有點歪的樣子。 spect_samp是你想要取樣頻譜的點數量。取越多越準確,但是越慢。 以下是模擬結果。 Enjoy!

斜切光纖的模擬

此文章包含以下內容:* 前言* 範例1:Ball coupling* 範例2:Conic interconnect前言在計算光纖耦合時,我們事實上無法計算光在單模光纖內的傳播,只能計算雷射經過系統後,有多少能量可以順利進入到單模光纖並在內部穩定前進而 (理想上) 不耗損能量,也就是耦合的效率。無法計算光在單模光纖內部行為的原因是單模光纖的尺度接近耦合光的波長,屬於波導而不是單純的光導管,此時光線或自由空間的純量傳播 (POP) 計算都不正確。也因此在計算耦合效率時,我們需要先知道:符合什麼條件的光才能順利進入波導傳播。對於口徑較大的多模光纖來說,這個條件是每一條光線的入射角度必須在指定NA之內。但對於單模光纖,這個條件則是整個光束 (beam) 在單模光纖端口的複數振幅分布,也就是模態,必須符合一定分佈。當入射光到達此光纖入口切平面時,複數振幅分布中不符合該模態的部分會在光纖中傳播時消逝,而無法到達另一端。以未斜切的單模光纖來說,這個可傳播模態即是高斯分布。但在實務上,常常我們會考慮讓光纖端面斜切,這有許多好處,例如反射光不會回到雷射造成系統不穩。當光纖有斜切的時候,可接受的入射模態就會改變。嚴格意義上來說,必須使用專門的軟體求解,例如OptiWave。當這類軟體計算出一個特定複數振幅分布後,即可以輸入OpticStudio模擬並優化耦合透鏡。這是最理想的狀況。在 “如何匯入波導模態資料到 Zemax 中 (How to Get Real Waveguide Mode Data Into Zemax)” 這篇知識庫文章提供了在 OptiWave 軟體中計算出有斜切跟沒有斜切的SMF-28光纖模態,並示範怎麼匯入OpticStudio進行耦合效率計算。而當我們沒有任何方式可以取得斜切光纖的模態時,則需要一些近似計算。光纖端面有斜切時,對入射的光線來說會有稜鏡的效果,也就是光束進入光纖時會被折射,不再是正向進入光纖,造成耦合效率下降。理論上,只要我們能調整整個光纖的角度,讓光束折射後,正好是正向進入光纖,就可以重新提高耦合效率。以下我們將舉例說明如何用一個Tilted面以及像面的搭配來模擬斜切的稜鏡效應,並且說明如何加入光纖的旋轉來補償效率的下降。範例1:Ball coupling以下讓我們開啟範例檔:\Documents\Zemax\Samples\Sequentia

OpticStudio内的通用画图工具介绍-Universal Plot

 欢迎大家的到来今天我们花点时间来认识下,OpticStudio里一个好用但有可能被遗忘的绘图小工具:Universal Plot。Universal Plot 是存在于专业版和旗舰版的通用绘图工具: 它是可以应用在序列或者非序列模式下,以任意表面参数,系统参数,多重结构或者非序列参数为变量(横轴),以优化操作数作为因变量(纵轴)的绘图工具。     换句话说,只要是能以优化操作数提取的信息,都可以作为纵轴的输出。   关于因变量(Dependent Variable)的选择,可以分为两种方式:方式1: 直接采用操作数,然后设置对应参数(下图左) 方式2:选择Merit,然后选择Merit Function Editor 中你想使用的对应行(下图右)  Universal Plot 有一维和二维可供选择,二维可以有两个变量(X,Y),一个因变量(Z)  希望这个工具可以在大家日常的设计输出或者评估中发挥作用下面我们来讨论下关于Universal Plot几个常见的问题:  采用POPD,IMAE等操作数作为因变量时,画出来的曲线感觉跟设置对不上? 如果遇到这类问题,大家可以看下Help File帮助文档里有没有对这个操作数的使用提醒    比如POPD的使用,需要设定后点击Save, 之后再用Universal Plot信息就会更新了。IMAE也是类似的操作。   采用NSDD操作数时, Universal Plot 无响应? NSDD操作数在Universal Plot的使用,须采用上述的方法二,即采用Merit方式, 且设置上需要搭配其他操作数,如NSTR一起,可以参考以下文章所描述的方法如何在Universal Plot中使用NSDD操作数  如果我想在Universal Plot中引入优化后的结果作为因变量(Dependent Variable),我应该怎么做? 首先明确的是,Universal Plot的工作流程是将变量X带入系统,算出对应的Y值,中间不涉及任何的优化过程。但如果想把优化引入之中,可以采用ZPLM。关于ZPLM也有些需要注意的地方,比如在ZPLM中采用GETT,再优化或者使用Universal Plot ,会遇到问题,可以参考下面有趣的讨论:如何在Universal Plot中引入ZPLM当然,这种方式的分析可能需要更长的时间来计算,因为必

Badge winners

  • Allow me to introduce myself
    saifhas earned the badge Allow me to introduce myself
  • Visibly Un-Polarized
    chaasjeshas earned the badge Visibly Un-Polarized
  • Visibly Un-Polarized
    Sean Turnerhas earned the badge Visibly Un-Polarized
  • Allow me to introduce myself
    Davidhas earned the badge Allow me to introduce myself
  • Allow me to introduce myself
    Toshihirohas earned the badge Allow me to introduce myself
Show all badges